
Poplar: Extending the Java Programming
Language for Evolvable Component Integration

Johan T. Nyström Persson

March 2012

Abstract

In the last few decades, software systems have become less and less atomic, and in-
creasingly built according to the component-based software development paradigm:
applications and libraries are increasingly created by combining existing libraries, com-
ponents and modules. Object-oriented programming languages have been especially
important in enabling this development through their essential feature of encapsula-
tion: separation of interface and implementation. Another enabling technology has
been the explosive spread of the Internet, which facilitates simple and rapid acquisi-
tion of software components. As a consequence, now, more than ever, different parts
of software systems are maintained and developed by different people and organisa-
tions, making integration and reintegration of software components a very challenging
problem in practice.

One of the most popular and widespread object-oriented programming languages
today is the Java language, which through features such as platform independence,
dynamic class loading, interfaces, absence of pointer arithmetic, and bytecode verifi-
cation, has simplified component-based development greatly. However, we argue that
Java encapsulation, in the form supported by its interfaces, has several shortcomings
with respect to the need for integration. API clients depend on the concrete forms of
interfaces, which are collections of fields and methods that are identified by names and
type signatures. But these interfaces do not capture essential information about how
classes are to be used, such as usage protocols (sequential constraints), the meaning
and results of invoking a method, or useful ways for different classes to be used to-
gether. Such constraints must be communicated as human-readable documentation,
which means that the compiler cannot by itself perform tasks such as integrating com-
ponents and checking the validity of an integration following an upgrade. In addition,
many trivial interface changes, such as the ones that may be caused by common refac-
torings, do not lead to complex semantic changes, but they may still lead to compi-
lation errors, necessitating a tedious manual upgrade process. These problems stem
from the fact that client components depend on exact syntactic forms of interfaces they
are making use of. In short, Java interfaces and integration dependencies are too rigid
and capture both insufficient and excessive information with respect to the integration
concern.

We propose a Java extension, Poplar, which enriches interfaces with a semantic
label system, which describes functional properties of variables, as well as an effect
system. This additional information enables us to describe integration requests declar-
atively using integration queries. Queries are satisfied by integration solutions, which
are fragments of Java code. Such solutions can be found by a variety of search algo-
rithms; we evaluate the use of the well-known partial order planning algorithm with
certain heuristics for this purpose. A solution is guaranteed to have at least the useful
effects requested by the programmer, and no destructive effects that are not permitted.
In this way, we generate integration links (solutions) from descriptions of intent, in-
stead of making programmers write integration code manually. When components are
upgraded, the integration links can be verified and accepted as still valid, or regenerated
to conform to the new components, if possible. The design of Poplar is such that verifi-
cation and reintegration can be carried out in a modular fashion. Poplar aims to provide
a sound must-analysis for the establishment of labels, and a sound may-analysis for the
deletion of labels. We describe the semantics of Poplar informally using examples,
and provide a formal specification of Poplar, which is based on Middleweight Java
(MJ). We describe an implementation of a Poplar integration checker and generator,

3

called Jardine, which compiles Poplar code to pure Java. We evaluate the practical
applicability of Jardine through a case study, which is carried out by refactoring the
JFreeChart library. We also discuss the applicability of Poplar to Martin Fowler’s well
known collection of refactorings. Our results show that Poplar is highly applicable to
a wide range of refactorings and that the evolution of integrated components becomes
considerably simpler.

4

Acknowledgements

I would like to thank professor Shinichi Honiden for his supervision of my Ph.D stud-
ies. His academic and financial support has been very valuable to me. He gave me
the freedom to pursue my research in my own way, while at the same time offering
essential advice and guidance during difficult times. I learned a great deal while I was
studying in his research lab.

I am also grateful to Masami Hagiya and the rest of the thesis committee: Shigeru
Chiba, Ichiro Hasuo, Zhenjiang Hu and Hidehiko Masuhara for valuable feedback and
discussions and for the time and effort that went into their thorough judgment of my
thesis.

I would like to thank the fellow students, researchers and friends who helped me
by reading paper drafts, discussing research, commenting on my presentations, collab-
orating on side projects, and so on, even though I did not always return the favour as
well as I should have: Rey Abe, Yukino Baba, Valentina Baljak, Lodewijk Bergmans,
Christoph Bockish, Daisuke Fukuchi, Levent Gürgen, Richard Hayden, Katsushige
Hino, Liyang Hu, Atsushi Igarashi, Taku Inoue, Fuyuki Ishikawa, Fan Jiang, Adrian
Klein, Benjamin Klöpper, Tsutomu Kobayashi, Yuta Maezawa, Mohammad Reza Mo-
tallebi, Hiroyuki Nakagawa, Eric Platon, Christian Sommer, Toriumi Susumu, Yoshi-
nori Tanabe, Kenji Tei and Florian Wagner, and all the members of the Honiden labo-
ratory. To Yoshinori Tanabe and Fan Jiang I am also grateful for their translation of my
thesis abstract into Japanese.

Alexandre Pichot was an intern at the National Institute of Informatics for six
months during the final year of my studies. His efforts were very valuable in devel-
oping Jardine, the main implementation of the language described in this work.

During my Ph.D studies I had the good fortune to be able to collaborate with Levent
Gürgen, Gabriel Keeble-Gagnère and Christian Sommer on significant side projects. I
acquired a lot of knowledge and skills in the course of these collaborations.

I would also like to acknowledge the secretaries at NII and at the University of
Tokyo, who assisted with administrative tasks and often helped me resolve language
barrier related problems: Saki Narimatsu, Kyoko Oda, Kaori Sato and Akiko Shimazu.

While I studied for my bachelors degree at Imperial College, London, I benefited
greatly from being supervised by Andrew Cheadle and Anthony Field, an experience
that introduced me to computer science research for the first time. I was also fortunate
to be working as a software developer under Sam Jervis and under Peer Vonna-Michell
before I started my PhD studies; I learned much from working with them and with
other colleagues.

I would also like to thank my other friends, in Japan and abroad, who have sup-
ported me in various ways during the Ph.D. process: Jacob Ehnmark, Sebastian Kelm,
Johan Lörne, William Marjerison Goto, Johan Paulsson, Hans Ryding, Amanda Weiss,
and especially Yoriko Yamamura.

Finally, I would like to thank my parents Maivi Nyström and Tommy Persson, who
have always supported and encouraged me.

5

Contents

1 Introduction 17
1.1 Procedure Calls as an Assembly Language 18
1.2 Inspirations for Our Work . 19
1.3 Hypothesis and Contributions . 20

2 The Design of Poplar 23
2.1 Background . 23

2.1.1 Object-oriented programming 23
2.1.2 The Java programming language 24
2.1.3 Component-based programming 26
2.1.4 Refactorings . 26

2.2 Observations on Java Component Evolution 27
2.2.1 The structure of integrating code 29

2.3 Inspirations . 29
2.3.1 Typestate and protocols . 30
2.3.2 AI planning . 32
2.3.3 Prospector: fragment mining and assembly based on types . . 32

2.4 The Elements of Poplar . 33
2.4.1 Labelled variables . 33
2.4.2 Queries . 34
2.4.3 Partial order planning . 35
2.4.4 Properties . 36
2.4.5 Resources and effects . 37
2.4.6 Fragment specifications . 40
2.4.7 Benefits of the resource and effect model 40
2.4.8 Uniqueness . 41
2.4.9 Workflow . 43
2.4.10 Modularity of analyses and transformations 43
2.4.11 Summary . 45

3 Language Reference 47
3.1 Syntax . 47
3.2 Labels . 49

3.2.1 Tags . 49
3.2.2 Properties . 49
3.2.3 Example . 50

3.3 Resources . 50
3.3.1 Resource access levels . 51
3.3.2 Resource mutations . 51
3.3.3 Implicit mutations . 51
3.3.4 Example . 51

3.4 Fields . 52
3.4.1 Plain fields . 52
3.4.2 Unconstrained resource fields 52
3.4.3 Constrained resource fields 52
3.4.4 Example . 53

3.5 Expression contracts . 54

7

CONTENTS

3.5.1 Label signatures . 54
3.5.2 Mutation summaries . 55
3.5.3 The chaining operation . 55
3.5.4 The alternation operation . 56
3.5.5 Subsumption of contracts . 56

3.6 Uniqueness of references . 56
3.6.1 Example . 58
3.6.2 Example 2 . 58

3.7 Overriding and subclassing . 59
3.7.1 Overriding of properties and resources 59
3.7.2 Overriding of methods . 61

3.8 Method Checking . 61
3.8.1 Method body checking . 62

3.9 Queries and query solving . 63
3.10 External resources . 64
3.11 Concluding remarks . 65

4 Formalising Poplar 67
4.1 Middleweight Java (MJ) . 69

4.1.1 Judgment forms . 69
4.2 Poplar0 : A Minimal Poplar . 69

4.2.1 Label signatures and chaining 70
4.2.2 Syntax and symbols . 73
4.2.3 Uniqueness kinds . 75
4.2.4 Method, constructor and field typing 75
4.2.5 Subsumption of label signatures, resources and mutation sum-

maries . 77
4.2.6 Well-formed class definitions, part 1 77
4.2.7 Typing judgments for expressions 79
4.2.8 Typing judgments for promotable expressions 80
4.2.9 Typing judgments for statements 81
4.2.10 Well-formed class definitions, part 2 84
4.2.11 Queries and satisfaction of queries 85

4.3 Poplar1 : Adding External Resources and Composite Properties . . . 86
4.4 Discussion . 88

4.4.1 Soundness . 88
4.5 Related Work . 90

4.5.1 Typestate and protocols . 90
4.5.2 Effect systems . 93
4.5.3 Alias confinement . 93
4.5.4 Other related work . 94

4.6 Conclusion . 94

5 The Design and Implementation of a Poplar Compiler 97
5.1 Selecting a foundation for Jardine 97
5.2 The tasks of a Poplar compiler . 98
5.3 Mixed Java and Poplar compilation 98
5.4 An Overview of of JKit . 99
5.5 An Overview of Jardine . 102
5.6 Uniqueness Checking Stage . 104

8

CONTENTS

5.7 Label Resolution Stage . 105
5.8 Poplar Checking Stage . 105

5.8.1 Representation of Poplar types 105
5.8.2 Principles behind the checking algorithm 106
5.8.3 Selected checking routines 108
5.8.4 Discussion . 111

5.9 Query Solving Stage . 112
5.9.1 Planning . 113
5.9.2 Decidability of planning . 116
5.9.3 Ensuring the safety of solutions in a context 116

5.10 A Future Extension: Verification of Integration Links 117
5.11 Conclusion . 117

6 Evaluation and Discussion 119
6.1 Case Study: Refactoring JFreeChart 119

6.1.1 A JFreeChart application . 120
6.1.2 Initial service API annotations 124
6.1.3 Initial solutions . 126
6.1.4 Refactorings to be carried out 131
6.1.5 Introducing a parameter object 132
6.1.6 Converting parameters to state 134
6.1.7 Splitting ChartTheme . 136
6.1.8 Hiding a delegate . 139
6.1.9 Introducing data readers . 140

6.2 Application to Fowler’s Refactorings 144
6.2.1 Composing methods . 144
6.2.2 Moving features between objects 145
6.2.3 Organising data . 146
6.2.4 Simplifying conditional expressions 147
6.2.5 Making method calls simpler 148
6.2.6 Dealing with generalisation 149
6.2.7 Big refactorings . 150
6.2.8 New refactorings . 150
6.2.9 Summary . 150

6.3 Discussion . 151
6.3.1 Limitations . 151
6.3.2 Reliability . 152
6.3.3 Adoptability . 153
6.3.4 Developing new Poplar components 153

6.4 Conclusion . 153

7 Related Work and Conclusion 155
7.1 Related Work . 155

7.1.1 Behavioural specifications 155
7.1.2 Labelled argument selection 156
7.1.3 AI planning . 156
7.1.4 Code synthesis and component generation 156
7.1.5 Empirical studies of software evolution 158
7.1.6 Component matching, discovery and retrieval 158
7.1.7 Component frameworks and techniques 159

9

CONTENTS

7.1.8 Handling component evolution 160
7.1.9 Other related work . 161

7.2 Conclusion . 162
7.3 Future Work . 163

7.3.1 Runtime composition . 163
7.3.2 Java-compatible syntax . 163
7.3.3 Additional language elements 163
7.3.4 Poplar specification mining 164
7.3.5 Implementation improvements 166
7.3.6 Quality parameters . 166
7.3.7 Analysis precision . 166

10

List of Figures

2.1 Two small components, one dependent on the other 27
2.2 Three-part structure of JDBC client code 30
2.3 Typestate diagram for a socket implementation 31
2.4 A socket implementation in a hypothetical object-oriented language . 31
2.5 TimeAndDate annotations for Java 1.4 34
2.6 TimeAndDate annotations for Java 1.5 34
2.7 Time and date integration solutions 35
2.8 Example of properties and resources. 39
2.9 Encoding the socket protocol with resources and properties 42
2.10 Uniqueness kinds used in Poplar . 43
2.11 The Poplar software development workflow 44

3.1 Identifying mutations of external resources 65

5.1 The JKit compiler pipeline . 101
5.2 Selected Java packages in JKit and Jardine, and their roles. 102
5.3 The Jardine compiler pipeline . 103
5.4 Uniqueness kinds used in Jardine . 104
5.5 Destructive read examples . 105
5.6 Field access with disjunctive specification 106

6.1 Chart window produced by ChartClient 120
6.2 Simplified JFreeChart class diagram. 121
6.3 Solution to the zoomIn query. 127
6.4 Solution to the makeLineChart query. 128
6.5 Solution to the LineChartMaker query. 129
6.6 Solution to the categoryCSV query. 129
6.7 Solution to the categoryJDBC query. 130
6.8 Refactorings to be carried out . 131
6.9 Solution to the LineChartMaker query with a parameter object. . . . 133
6.10 Solution to the LineChartMaker query with additional state. 135
6.11 Class diagram for the Split ChartTheme refactoring 137
6.12 Solution to the makeLineChart query. 138
6.13 Solution to the zoomIn query. 139
6.14 Class diagram for the DataReader refactoring 141
6.15 Solution to the categoryCSV query. 142
6.16 Solution to the categoryJDBC query. 143

7.1 A future extension: protecting external state in JDBC with resource links165

11

List of Algorithms

1 Check term (generalised): checkTerm(t, IDL,DL) 107
2 Check sequence: checkSeq(statements,DL) 108
3 Check sequence with field write: checkSeqFW (statements,DL) . 109
4 Check if-statement: checkIf(cond, branch1, branch2, DL) 110
5 Check resource field access: checkF ield(owner, field,DL, IDL) . 110
6 Check method invocation: checkInvoke(receiver,m, params, IDL,DL)111
7 Check method body: checkMethod(m) 112
8 Solve all queries in a class . 113
9 Main plan search algorithm . 115
10 Successor construction procedure successors 115
11 Conflict resolution procedure resolveConflicts 115

13

List of Terms

Client component A component that contains a query.

Component In this work, we consider a component to simply be a set of classes.

Composite property A conjunction of properties. Provides a simpler way of specify-
ing multiple properties simultaneously.

External resource A resource with concrete state in one class that provides properties
for another class.

Integration link A query and an associated solution.

Jardine Our implementation of a Poplar compiler. See Chapter 5.

Label The most basic unit of Poplar’s specification language. Expressions are de-
scribed in terms of a lower bound on the set of labels currently associated with
them.

Label signature A triplet of three sets: additions, invariants and subtractions, which
describe, either for a given variable or for a set of variables, the assumptions and
effects of an argument in terms of its labels. This is a lower bound and it is not
necessary to report all labels.

Method contract In Poplar, a pair of a label signature and a mutation summary. To-
gether, these two specify a method in terms of its assumptions and effects about
labels.

Mutation (of a resource) A change to the concrete state associated with a resource.
This results in the loss of all properties associated with that resource and the
specified object/objects, unless otherwise specified.

Mutation summary A list of all the resources that may be mutated as the result of
executing a method or constructor. This is described in terms of an upper bound.

Poplar0, Poplar1 Two formalisations of Poplar, based on MJ, a calculus for a frag-
ment of Java. See Chapter 4.

Poplar signature See method contract.

Produce query A query that requests the production of a new variable of a given type
and a given label set.

Property A label that corresponds to a predicate on an object’s concrete state. Asso-
ciated with a resource.

Query An integration request. In Poplar, dependencies from one component on an-
other may be expressed declaratively using queries. Concrete code (a solution)
replaces the query at compile time. For a given query, solutions can change over
time in response to component evolution.

Resource A group of properties and concrete state (fields). The erasing of properties
is described in terms of mutation of resources.

15

LIST OF ALGORITHMS

Service component A component that provides declarations (methods and fields) that
can be used as building blocks for satisfying a query.

Solution A code fragment that satisfies a query. Jardine replaces queries by their
solutions, found using a search algorithm, at compile time.

Tag An immutable (impossible to erase) label that does not necessarily correspond to
a predicate on an object’s concrete state. For instance, it may be used to identify
constants.

Transform query A query that requests that a new label set should be associated with
an existing variable.

Uniqueness kind Uniqueness kinds classify references according to whether they may
be aliased or not, and according to whether new aliases may be created.

16

1
Introduction

All flows, nothing stays.

Heraclitus (Lives of the Philosophers
by Diogenes Laërtius)

Change is universal. The sun rises and sets, tides rise and fall. Cars accelerate
and decelerate. Elements freeze, melt, evaporate and condense. Circuits are switched
on and off, new laws are made and old ones are repealed. Species evolve. The world
consists of systems of changing, interconnected entities.

I, too, underwent change. Before embarking on the work presented here I worked
as a software developer for two years. One of the tasks I busied myself with during that
time is sometimes called maintenance programming: ensuring that a software system
is up to date and remains functional when one of its components has changed. Even
though one eventually becomes somewhat proficient at it, maintenance programming
is not a glorious task. Component interfaces typically consist of APIs, which, in many
current programming languages, are groups of classes, fields and methods. These can
be thought of the components’ vocabularies. A typical situation would be that an ar-
gument had been added to a function or a family of functions, or a function had been
moved to a different module, or a similarly small change resulting from some refactor-
ing need. Propagating or compensating for these changes in a large code base is not
easy, nor is it enjoyable. Could this problem be automated, and what else would one
gain if one automated it?

Technological innovations are often justified by the desire to automate a repetitive
task. But in the course of finding a solution to a simple problem, one often discovers
more subtle fundamental problems.

Computing, and digital technology in general, derives its power from its precision.
But complex systems are usually not constructed atomically, but rather built piecemeal.
Circuit builders have integrated circuits. Plumbers have standard pipe and joint sizes.
Screws, nuts and bolts have standard shapes where the appropriate tools will fit pre-
cisely. Cars are designed to fit roads, and shoes are built to fit people’s feet. In all
these cases, systems are put together from different parts that are designed by different
people at different times, yet they are able to interoperate well.

In some cases this interoperability derives from an intentional imprecision, or slack,
in the specification. For instance, integrated circuits often specify acceptable upper
and lower ranges on their operating temperature and supply voltages. A chip may be
specified as expecting an input voltage of 4-6 V instead of precisely 5 Volts. Cars for
normal roads are built according to a legislated maximum width, length and weight,
and if they weigh less than the maximum tolerable weight, there will be no problem

17

CHAPTER 1. INTRODUCTION

driving them on the roads. The world is full of tolerance ranges that act as buffers for
change. When a small change is applied somewhere in the system, if the change is
within the acceptable range, the system will not break, but instead absorb the change
or propagate it to other components and keep functioning. But when we consider the
realm of software, or logic, the same is usually not true.

A small mutation in the DNA (genotype) of a cell often expresses itself as a small
change in the cell’s observable characteristics (phenotype), if at all. Such mutations
often do not constitute a threat to the cell’s survival or basic functioning. Gojobori
et al. found, when studying virus mutations, that the vast majority of mutations were
synonymous substitutions, which are redundant with respect to the production of amino
acids [44]. On the other hand, when the first bacterial cell with completely synthetic
DNA was made to self-reproduce, researchers found that even very minor errors in the
genome would, under the circumstances of that experiment, prevent cell replication
from taking place [42]. So it seems that in biological systems too, interconnections
with a wide variety of different tolerances to parametric changes appear.

Unlike cars, shoes, and circuits, many software systems are never delivered to the
customer in a final, irreversible way. Software is often provided and updated on an
ongoing basis, even when it has been installed at customer sites far away. This trend has
intensified in recent years, thanks to the ability to deliver software through the internet.
Companies release continuous updates to their products and operating systems after
the products have been sold. Customers are expected to install the latest updates on a
regular basis in order to retain qualities such as compatibility and security. In a complex
product built from software as well as hardware components, the former might never
stop changing.

Computer systems are not always fragile with respect to changes. The Internet is a
remarkable example of a resilient architecture, where hosts are continually added, re-
moved, reconfigured or moved without threatening the system’s basic operation. Error-
correcting codes such as the Hamming code [81] are capable of detecting signal dis-
tortion within a prescribed range. However, interconnections between software com-
ponents remain fragile. Since McIlroy’s NATO address [78] in 1968, the software in-
dustry has dreamed of reusable components. But the concrete connections have always
been made by referencing explicit procedure, message, function or method names.
Even though some layers of indirection have sometimes been added, in various forms,
fundamentally it is impossible to impose tolerance ranges on the inputs and outputs of
these components. Variability is minimal, and changes cannot be absorbed or propa-
gated. Incompatible changes are fatal poisoning.

The maintenance programming task was often complex at first, but later mechani-
cal, once one had decided precisely how to adapt something to a particular change. It
seemed as if this task could be automated somehow, if the way programming languages
wire components and modules together was changed slightly.

1.1 Procedure Calls as an Assembly Language

Object-oriented programming has been an important step towards making software
more modular and towards easing the modelling of external entities in software. Object-
oriented languages emphasise grouping related data and procedures (encapsulation),
hiding implementation details in the process. As implementation details are hidden
from client objects, dependencies can only contain a limited amount of knowledge
about objects and components. The information that may be known publically is usu-

18

1.2. INSPIRATIONS FOR OUR WORK

ally called an interface. The constraint that dependencies may depend only on inter-
faces, and not on implementation, enables polymorphism: different concrete objects
with different implementations, but with compatible interfaces, become substitutable
for each other.

The Java programming language [10] is one of the most widespread object-oriented
programming languages today. One of the reasons for it becoming widespread is that
programs execute on a virtual machine: rather than being compiled directly to CPU in-
structions, they are compiled to instructions for an abstract machine [72]. In effect, the
abstract machine encapsulates the physical hardware. It is then a separate problem for
virtual machine implementors to implement the abstract machine, either through inter-
pretation or through just-in-time compilation (immediately before the program is run)
to the concrete instructions of the hardware CPU. In addition to this virtual machine,
Java has several features that directly support encapsulation and modularity. There are
several explicit visibility levels in classes, which can be used to establish a more refined
visibility hierarchy than a binary distinction between exposed and not exposed. Unlike
in C-family languages, direct memory access and pointer arithmetic is not possible, so
there will never be any invalid pointers, eliminating a large class of program errors.
These and other innovations help make Java one of the most practical programming
languages for component-based software development to date.

However, Java (and almost all other programming languages in widespread use
today) still has an essential construct that limits the modularity that can be granted
even by encapsulation and polymorphism. This problem was identified by Shaw in
1993 [103]: procedure calls are the assembly language of software interconnections. A
module depending on another invokes methods (Java procedures) with specific names,
argument types and argument orderings, and the methods themselves are invoked in
a specific order. A surprising amount of potentially harmful detail is encoded in se-
quences of these seemingly innocent invocations: the semantics of a single method, of
each possible ordering of methods, requirements on each argument, any possible ex-
ceptions that might be thrown, and so on. Integration links consisting of sequences of
method calls are, we believe, one of the fundamental sources of compositional fragility
in Java programming. This is both because they can render a system impossible to
compile, by failing to respond to a purely syntactic change, such as a renaming of a
method, or because they may fail to catch a potentially poisonous change, such as a
change in method semantics that has been introduced without any corresponding syn-
tactic change. The work presented here is an attempt to create and maintain connections
between software components in a novel way, so as to introduce more variability into
the connections. Our goal is both to detect poisonous changes when they occur and to
help propagate harmless changes whenever possible.

1.2 Inspirations for Our Work

In this work, we argue that sequences of method calls and field accesses that integrate
components with each other should be constructed automatically rather than written
manually. Furthermore, we argue that they should be constructed in such a way that
their enduring validity can be checked automatically against new versions of compo-
nents.

We are inspired by several existing lines of research. Prospector [75] is an interac-
tive tool that generates code fragments as suggestions to the programmer. These frag-
ments are found by mining a code base assumed to be valid in advance and potentially

19

CHAPTER 1. INTRODUCTION

applying simple transformations to the result. Especially interesting is Prospector’s
user interface, where the user requests a fragment by asking for a way to produce a
variable of a specific type in a specific context. However, this approach is dependent
on being able to mine a code base, and it is fundamentally designed for interactive
use; we are interested in approaches that are fully automatic and integrated with the
programming language itself, since the problem fundamentally originates at this level.

Typestate and protocol specifications [110, 27] provide a way to encode temporal
specifications. A typical use of typestate for an object-oriented language is to be de-
scribe each object as a finite state machine and annotate methods with state transitions
or invariants. This is a significant improvement on raw sequences of method invoca-
tions, since invalid sequences can be ruled out. Clients can be checked to confirm that
their usage of a given interface conforms to a given protocol specification.

AI planning [40, 77] is the problem of identifying a sequence of actions that trans-
form a starting state into a goal state, given a set of available actions in some domain.
Typically, actions may interfere with each other and undo previously achieved results.
We may observe that the problem of constructing a valid sequence of method calls
to achieve some integration purpose very much resembles AI planning: some starting
condition is available in the client component’s context (the available variables and the
state that they are known to be in), the integration has some goal, and there is a finite
amount of actions available (method invocations and field accesses). In Prospector,
goals were expressed as the production of a given type. We believe that the goal of a
component integration can always be described in terms of either the computation of a
value with some properties, or the production of a side effect. We are not aware of any
existing work that uses a combination of typestate/protocol specifications and AI plan-
ning; however, Alfonso has investigated ways to interactively provide conformance
recommendations from protocol specifications [6].

We are also inspired by labelled argument selection, which has previously been
applied to labelled lambda calculus [1, 39, 38]. In this calculus, arguments are se-
lected automatically based on a matching of their labels with function signatures. This
is attractive since it removes the need to identify procedure arguments by their order-
ing. We are not aware of any application of labelled argument selection to imperative
object-oriented languages. While languages such as Lisp [106] and ADA [68] allow
the programmer to reorder parameters or omit optional parameters based on labels,
they do not use this facility to automatically select arguments from a set of available
expressions. We believe that combining labels with a temporal formalism, such as type-
state, provides a necessary foundation for automated argument selection in imperative
object-oriented languages.

1.3 Hypothesis and Contributions

Considering the inspirational work we have just mentioned, we would like to create a
Java extension that combines these ideas. The hypothesis we seek to confirm is that
a combination of AI planning, labelled variables and temporal specifications, when
augmenting the Java programming language, can yield a fully automatic component
integration technique that is robust to evolution. The main contribution of this thesis
is an extended version of Java, Poplar, that confirms our hypothesis. We provide the
design of Poplar, a formalisation, an implementation and a case study.

In this work, we are not aiming to provide a highly precise analysis, but strive
mainly for simplicity and soundness. We also do not aim to provide a highly efficient

20

1.3. HYPOTHESIS AND CONTRIBUTIONS

compiler and checker, if doing so would require significant work. These and other
aspects of our work can potentially be enhanced in the future, independently of each
other. Our main goal is to investigate the basic viability of our approach.

The design of Poplar is described in Chapter 2. The key elements of Poplar are la-
bels, integration queries and resources. Poplar reasons about variables based on the set
of labels that they are currently considered to possess. Integration queries can express
requests for variables of specific types and with specific labels. Labels may, like types-
tate, correspond to concrete predicates on the state of objects; in this case, we call them
properties. A high level overview of Poplar’s design has previously been published
in [87].

In Chapter 3, we describe Poplar’s language elements and semantics in detail through
the use of examples. This chapter aims to give a detailed, but readable, understanding
of how the language works.

In Chapter 4, we specify Poplar as an extension of Middleweight Java (MJ [18]), a
core calculus for an imperative fragment of Java. We formalise two systems, Poplar0 and
Poplar1. Poplar uses guarantees about the creation and deletion (for properties) of
labels. We argue that Poplar provides a sound must-analysis for labels, and a may-
analysis for resource mutations (which represent potential label deletion). The analysis
depends on reasoning about the aliasing of references; we use a simple scheme that
classifies references according to whether they are unique and whether new aliases
may be created. The analysis is modular. This chapter also discusses related work in
the context of the formalisation.

In Chapter 5, we describe a proof of concept implementation of a Poplar compiler,
called Jardine. Jardine performs component integrations, checks method contracts, and
compiles Poplar code to ordinary Java classes. There is no need for special runtime sup-
port. Jardine was developed jointly with Alexandre Pichot, of the University of Pierre
and Marie Curie in Paris, France. Jardine extends an existing Java compiler, JKit [92],
with several new compilation stages. The most important new stages are the Poplar
checking stage, which checks method contracts using the system formalised in Chap-
ter 4 and assigns Poplar types, and the Query solving stage, which performs the actual
integration process. We discuss the key algorithms used in these stages. The planning
algorithm used for query solving is partial order planning [83, 77], which gradually
strengthens a partial ordering of actions, although our design does not fundamentally
restrict the choice of planning or search algorithm.

In Chapter 6, we perform a case study by applying Poplar to an existing Java library,
JFreeChart. We show how the JFreeChart API can be evolved and the changes compen-
sated for automatically by Jardine in a wide range of refactorings. We then discuss the
theoretical application of Poplar to Fowler’s well known collection of refactorings [34].

Chapter 7 concludes the thesis. We discuss general related work, confirm our hy-
pothesis and discuss future work.

21

2
The Design of Poplar

In this chapter, we introduce Poplar informally. We begin by introducing some general
background - object-oriented programming and the Java language - in Section 2.1. We
then make some observations in Section 2.2, which illustrate the difficulties of evolving
Java components and help motivate our design. In Section 2.3, we then discuss some
existing solutions that have relevance to our problem and that inspired our design. In
Section 2.4, we gradually introduce the design of Poplar - labels, properties, queries
and resources - and their rationale.

2.1 Background

2.1.1 Object-oriented programming
Object-oriented programming (OOP) has now been a major paradigm for decades. Per-
haps the most crucial features of OOP are encapsulation, dynamic message passing,
and polymorphism [94, p. 225] [99, p. 249] [85]. The principle of encapsulation states
that the implementation of an object should be separated from its interface. In other
words, as client objects, we should not need to know how an object performs its task,
only how to interact with it. This in turn enables polymorphism: once we are depen-
dent not on the full details of an object, but only on partial and observable details, that
object becomes replaceable by other objects with compatible interfaces but different
implementations. Finally, message passing, often implemented as virtual method calls,
emphasises object communication through messages. The receiver of a message is of-
ten not known at compile time but must be found at runtime through some dynamic
process.

All of these features were present in some form in Simula-67, one of the earli-
est object-oriented languages. Smalltalk emphasised message passing and defined the
notion of protocols, collections of messages that could be received and sent, which
inspired Java’s interfaces.

Modern object-oriented languages such as Java and C# have the notions of classes,
which serve as blueprints, and objects, which are instances of classes. Classes often
also act as the only mechanism for structuring the program in the large. Languages
such as OCaml have separate module and class systems, but in the absence of this,
classes typically also play the role of modules. Modern object-oriented languages typ-
ically also allow for the creation of new classes through the subclassing operation.
Through subclassing, a new class is defined as a set of changes to an old class. In
Java, new definitions may be added and old ones may be redefined. This is not only a
means to incrementally create a hierarchy of increasingly precise definitions, but also

23

CHAPTER 2. THE DESIGN OF POPLAR

a way of explicitly describing the type hierarchy. In subclassing, the supertype is iden-
tified explicitly, leading to nominal subtyping, which is another common feature of
modern object-oriented languages. On the other hand, structural subtyping, in which
definitions are inspected for compatibility to determine whether types have a subtype
relationship or not, has not been as successful outside of academia as nominal type
systems [94, p. 251].

2.1.2 The Java programming language

The Java programming language was introduced by Sun Microsystems in 1995. In its
early research stages it was called Oak [45]. Originally a niche language with some-
what controversial features, by 2011 it was the most popular programming language in
widespread use, according to the TIOBE programming community index [117]. In that
year it received a rating of 17.874%, a number that indicates the share of programming
related discussions and pages on the Internet linked to Java. For most of the previous
ten years it also held the top spot, surpassing languages such as C, C++, Lisp and SQL.
Although the search engine based methodology of this index is not a perfect reflection
of programmers’ day to day activities, these numbers do give us an indication of Java’s
popularity today.

In the late 1990’s, Java was marketed and known as a programming language for
the world wide web. Java Applets were a new technology for the web browser, which
promised to deliver interactive content in a way that the prevailing web standards of
the day could not do [122]. During the 2000’s, the situation changed and Java became
dominant in various market segments - embedded systems, middleware, web service
backends, and mobile devices [114, p. 262] - while becoming less dominant on the web
browser and on the desktop. However, throughout these changes, or perhaps enabling
them was a consistent focus on platform independence and network computing.

Java borrows syntax from C++ and concepts from languages such as Smalltalk and
Simula-67.

Platform independence through a virtual machine. Java is often described not as a
programming language but as a programming platform consisting of three parts:
the language itself, a virtual machine, and a standardised set of class libraries.
The virtual machine (JVM) is a runtime environment that is capable of executing
Java bytecode [72]. The design of the bytecode, the class file format, in which
bytecode instructions are stored, and the language itself means that it is relatively
easy to produce efficient implementations of the JVM on many different kinds
of underlying hardware platforms.

Bytecode. The Java compiler compiles the language not to assembly code for a hard-
ware CPU, as compilers typically do, but to the bytecode format which is capable
of running on the JVM[72, p. 171]. The bytecode format resembles the instruc-
tion set of a physical CPU in some ways, while differing from it in others. For
instance, it has the concepts of registers and a stack, but there is no possibility
of addressing a heap location explicitly by pointing to its offset from some start-
ing position. Indeed, pointer arithmetic is completely absent both from the Java
language and from the Java bytecode. This removes one of the most frequent
sources of crashes due to memory access errors in languages such as C. Re-
cently, there has also been an influx of new languages for the Java platform that
compile to Java bytecode, taking advantage of the wide availability of libraries

24

2.1. BACKGROUND

and components. Some examples are Scala, Clojure (which is an implementation
of Lisp), and JPython (which is an implementation of Python).

Dynamic classloading. Class files containing bytecode can be obtained from almost
any source at run time, and then incorporated into the running program [72, p.
155]. Indeed, many features of the language were designed specifically to enable
downloading of classes from a network, such as the Internet. When classes are
loaded into the JVM, they are verified with respect to a number of predefined
safety properties, such as the validity of stack accesses, before being compiled
and run[72, p. 140]. This enables many basic security invariants to hold up
even when some classes are compiled by a potentially untrusted compiler. An
important consequence of the dynamic classloading mechanism is that the full
set of classes that will be used by a program is, in general, impossible to know
at compile time. Thus, when developing analyses and transformations for Java,
modular analyses, which can operate on one class at a time without necessarily
having access to the entirety of the program, are much more attractive than non-
modular analyses.

A strong type system. It is impossible to cast a variable to a type it is not a member
of in Java. Attempting to do so will result in a runtime error.

Absence of multiple inheritance. Although Java permits multiple inheritance of in-
terfaces, which specify names and type signatures of class members, in contrast
with the C++ language, it does not permit multiple inheritance of implemen-
tations [45, p.75]. Prohibiting this prevents the ”diamond problem” whereby
different implementations for the same method are inherited with equal priority,
resulting in compile time ambiguity.

Native methods Java is able to invoke methods written in C (or compatible languages)
by using the Java Native Interface, JNI. In fact, almost all Java I/O, OS access
and other system operations are ultimately done through JNI [45, p. 218].

Garbage collection. In contrast with C++, Java is garbage collected: there is no ex-
plicit deallocation operation cite[p. 447]Arnold:2005uq. This helps software
developers avoid errors such as memory leaks, where heap memory grows irre-
versibly if pointers are lost before being deallocated.

Checked exceptions Each method that may potentially throw an exception must either
declare that it does so, or catch the exception in a try ... catch statement [45,
p. 297]. This annotation-based analysis of potential side effects is similar to
resource mutation in Poplar, which we will introduce later to manage properties.

Package structure Java classes are grouped in packages, and the visibility modifiers
provide a way of hiding classes and class members to the outside of a pack-
age [45, p. 153]. The package structure must be reflected in the source code
and class file (compiled code) directory layout. This provides a natural mecha-
nism for programmers to structure a program. It is common to prefix package
names with an inversion of an internet domain name to prevent name clashes
with other organisations; for instance, the Poplar implementation described in
Chapter 5 resides in the package jp.ac.nii.jardine. Classes are imported using
their fully qualified class name; com.alpha.System is a different class from
com.beta.System but either may be referenced as System once imported.

25

CHAPTER 2. THE DESIGN OF POPLAR

Reflection. Java programs may reason about themselves using the reflection API, a
set of classes designed to represent Java programs themselves [10, p. 397]. This
paves the way for interesting metaprogramming techniques that might not oth-
erwise be possible. For instance, it is possible to inspect a class and look for a
method with a particular name or type signature.

Strong concurrency support. Java was designed from the ground up with concur-
rency in mind [45, p. 553]. In particular, each object can act as a monitor, and
the synchronized monitor indicates that a method needs to acquire and release
a lock on an object when it executes. Any object can act as a lock. In this work
we will not consider concurrency aspects; we leave these for future work.

2.1.3 Component-based programming
There are many different perspectives on what a software component should be and
what level of granularity it should be viewed at. Szyperski takes the view that soft-
ware components are units of software deployment, of third party composition, with
no externally observable state[114, p.36]. In this work, we take a more general view;
we simply assume that a component is a set of classes, which may or may not be sup-
plied by the same developer who is using it. We discuss existing component-based
frameworks more generally in Section 7.1.7

2.1.4 Refactorings
Refactorings are systematic rewritings of source code with the aim of improving archi-
tecture, quality or performance. They usually differ from other changes to source code
since they involve structural changes, not merely addition, change or removal of detail.
For this reason, changes that involve multiple classes are often refactorings, and refac-
torings often involve multiple classes. Fowler et al [34]. give the following definitions
of refactoring as a noun and as a verb:

Refactoring (noun): a change made to the internal structure of software to
make it easier to understand and cheaper to modify without changing its
observable behaviour. [34, p. 53]

Refactoring (verb): to restructure software by applying a series of refac-
torings without changing its observable behaviour. [34, p. 54]

They also give a list of more than 60 different Java refactorings, including items such
as extract interface, remove parameter, self encapsulate field, pull up field, and so on.
They recognise that refactoring may cause problems when it leads to interface changes:

One of the important things about objects is that they allow you to change
the implementation of a software module separately from changing the
interface. You can safely change the internals of an object without anyone
else’s worrying about it, but the interface is important - change that and
anything can happen. [34, p. 64]

Dinstinguishing between published interfaces (where the programmer cannot change
all the clients of the interface alone) and unpublished interfaces, they simply recom-
mend that programmers do not publish interfaces too early, and that once interfaces
have been published, they should not be removed. Beyond this point, the old APIs

26

2.2. OBSERVATIONS ON JAVA COMPONENT EVOLUTION

1 class Account {
2 void deposit(int amount) { ... }
3 }
4 class Customer {
5 void deposit(Account a, int amount) {
6 a.deposit(amount);
7 }
8 }

Figure 2.1: Two small components, one dependent on the other

should always be supported, and refactorings should be reflected in new methods and
fields only. Java does in fact provide a deprecated annotation that allows program-
mers to indicate that API elements are not to be used in new code, but the value of this
keyword is dependent on the willingness and ability of API clients to change their code
when they get deprecation warnings.

Bloch echoes these recommendations [19]. His recommended principles for effec-
tive use of the Java language include items such as minise the accessibility of classes
and members, favor immutability and favor composition over inheritance (since inheri-
tance breaks encapsulation). In other words, conventional wisdom regarding published
interfaces in the Java community is to minimise them as much as possible, since it is
recognised that they will eventually be a drag on software evolvability and reusability.
It seems clear that the evolvability and reuse friction associated with published inter-
faces is a major scalability constraint on component-based software. Component-based
software cannot exist unless components are able to communicate with each other, but
this can only occur through interfaces.

Dig et al studied breaking changes in several large software systems [28]. In each
system, more than 80% of breaking changes were due to refactorings. It is clear that
there is a significant tension between developers’ desire to keep components up to date
and the risk of syntactic and semantic breaking changes.

2.2 Observations on Java Component Evolution

In order to establish a basic intuition about the nature of the problem we are address-
ing, let us begin by considering a component based software development scenario in
Java, and some of the issues that may emerge as components evolve. We will define a
component to be a set of classes with a common purpose or application domain. We
consider a situation containing two components: a component that provides bank ac-
counts (A), and one that contains customer classes that interact with these accounts
(C). B provides the Account class, and C provides the Customer class. Figure 2.1
illustrates this. In this example, we have omitted declarations that are irrelevant for the
point we would like to highlight, and we will do so throughout this chapter.

The main dependency that can be seen in the example is that the Customer class
explicitly invokes a method on an instance of the Account class. In doing so, the
designer of the Customer class is creating dependencies on several aspects of the
Account class:

• The name of the method deposit

• The number of arguments of the method

27

CHAPTER 2. THE DESIGN OF POPLAR

• The types of the arguments of the method

• The ordering of the arguments of the method

• Assumptions about the arguments of the method, their purpose, and states prior
to and after the method invocation

• The purpose of the method: those side effects and return values (if any in this
case, there is none), that the Customer class is explicitly interested in

• The expected state of the Account class prior to and after the invocation of the
method, including state that the Customer class is not interested in for its own
sake. This includes assumptions about methods that should or should not have
been invoked prior to or after the invocation of this method.

• Any exceptions that might be thrown by the method (in this case, it is assumed
that there are none)

Each of these dependencies may give rise to what is sometimes called a breaking
change - a change in the depended-on component that gives rise to bugs in its client
components.

Many of the potential breaking changes may be compensated for by applying a
simple transformation, which often is immediate from the nature of the change itself.
For instance, when an argument was added, instructions were supplied as to how this
additional value was to be obtained. On the other hand, when the purpose of the method
changed subtly, there was no obvious way for clients to compensate, and client com-
ponent developers needed to consider carefully how to respond to the change. We
may call the former case, when upgrading is a matter of mechanically applying some
kind of transformation, a syntactic breaking change. The latter case, where no obvious
transformation exists, may be called a semantic breaking change.

The Java compiler responds very differently to these various changes. For instance,
many syntactic changes will cause the program to no longer compile, since a method
invocation with the wrong number of arguments, or with the wrong argument types, is
not valid Java code. On the other hand, most of the semantic changes, in as far as they
have no syntactic counterpart, will be invisible to the compiler, potentially allowing
bugs to be introduced into the program quietly. These are the essential problems we
wish to address: syntactic changes, which can be mitigated by a simple transformation,
should be handled automatically by the compiler and not require tedious manual up-
grade work by programmers. Semantic changes should be detected and trapped by the
compiler, alerting programmers to the possibility of an error, since in this case careful
developer consideration is essential.

The issue of semantic breaking changes is highly problematic. In a perfect world,
component publishers would publish complete formal specifications of the semantics
of each declaration in all of their interfaces - design by contract. However, because
of the additional effort required, because of the conflict between the expressiveness
of such specifications and the feasibility of verifying them, this is not always done in
practice. In addition, publishers stand to gain by providing less detail in their specifica-
tion, since this makes their component open-ended and amenable to future evolution, to
some degree. But clients stand to gain from assuming more details than what has been
specified, since this simplifies their development task. If client component developers
can make something work by trial and error, they often assume that the condition they

28

2.3. INSPIRATIONS

depend on will remain true for the foreseeable future, even if it was not specified. This
kind of scenario is a breaking change waiting to happen.

We argue that it is possible to improve the design of the Java language to better
deal with both syntactic and semantic breaking changes. Syntactic breaking changes
occur when an interface undergoes structural or naming changes, for example due to
refactoring. When such changes have occurred, but the underlying capabilities of the
component have not been reduced or diminished, ideally the compiler should discover
by itself how to acquire equivalent functionality using the new interface. With Poplar,
this is possible, since we will declaratively express the intent behind an integration
of two components in a fine-grained way, rather than specifying each individual step
(Java statement) in the integration. Following a syntactic breaking change, equiva-
lent functionality can be constructed from the same integration request, assuming the
component still provides the functionality. Semantic breaking changes occur when the
contract of a method has changed in unexpected ways. Poplar provides a flexible and
fine grained form of design by contract, in the sense that the purpose of each variable
in an interface declaration, for instance each argument as well as the receiver and the
return value in a method invocation, can be specified precisely. The problem of main-
taining the exact meaning of each method or field in Java is reduced to the problem of
maintaining the exact meaning of individual labels in Poplar. Adding a label as a post-
or a precondition can strengthen and weaken the specification, respectively. Removing
a label as a pre- or a postcondition is similar. Because of the finer granularity of this
problem, semantic changes can be expressed naturally and are easily captured when
integration links are checked or regenerated.

2.2.1 The structure of integrating code

Consider the JDBC client in Figure 2.2. The goal of this client is to read a specific value
(target) from the database. In order to obtain it, four inputs are needed: p, query, url
and column. Three statements, beginning from DriverManager.getConnection can
be informally identified as the bridge between the first inputs and the ultimate target
value. Although we have not conducted a formal study, we argue that this three part
division into inputs, bridge and goal is a typical scenario for a client that integrates with
an API. Furthermore, many refactorings, especially purely syntactic ones, often result
in necessary changes to the bridge part, but not to the other parts. One perspective on
the solution that we will present in this work is that we strive to generate, regenerate
and verify this ”bridge section” of integrations automatically.

2.3 Inspirations

We have seen that there is a fundamental tension between refactorings and evolvable
component integration. We observed that integrating code can often be considered to
consists of inputs, a bridge, and a goal, and we believe that greater evolvability can be
achieved by focussing on generation, verification and regeneration of the bridge. We
now discuss some techniques, fields and existing systems that served as inspirations for
our solution.

29

CHAPTER 2. THE DESIGN OF POPLAR

1
2 void m(Properties p) { /* Inputs: p, url, query, column */
3 String url = "jdbc:mysql://localhost:3306/...";
4 String query = "select * from data where item.value > 5;";
5 int column = 1;
6
7 /* The following 3 statements bridge the goal and the inputs */
8 Connection c = DriverManager.getConnection(url, p);
9 Statement s = c.createStatement();

10 ResultSet rs = s.executeQuery(query);
11
12 while (rs.next()) {
13 int target = rs.getInt(column); //Target value (goal)
14 //...
15 }
16 }

Figure 2.2: Client code that uses the JDBC database API. It is possible to distinguish between
inputs, a goal and a bridge between the two.

2.3.1 Typestate and protocols

For many classes in object-oriented languages, it is not always valid to invoke ev-
ery possible method. There are often temporal constraints on valid and invalid se-
quences of method invocations. One formalism that can be used to model such tem-
poral constraints is typestate, which was introduced by Yellin and Strom [110], and
later adapted to object-oriented languages by Deline and Fähndrich [27]. Typestates in
object-oriented languages correspond to predicates on the objects’ concrete state. By
knowing an object’s typestate, if we know what state is assumed by each method and
what state is established after the invocation of each method, we can know what meth-
ods may be invoked without error. Typical applications include classes that in some
way deal with I/O, for instance streams and socket that must be opened or closed, or
classes that may be initialised in some way before certain messages can be accepted.
Clearly, many exceptions and runtime errors in languages like Java could be avoided
completely if typestate checking could always be applied easily.

Figure 2.4 shows the source code for a Socket implementation in a hypothetical
Java-like programming language with typestates. Figure 2.3 shows the typestate di-
agram induced by the specification. All the methods specify a transition, except the
constructor, which ”transitions” from no state into the initial state @raw, send and
receive, which only describe an invariant, and bind, which describes a disjunction
between two possible transitions.

An example of a valid method sequence in this model is new Socket, bind, con-
nect, send, receive, receive, close. An example of an invalid sequence is new
Socket, bind, send. Note that the meaning of each state - the concrete predicate on
the class’ fields and other resources it holds - is not specified. It is possible to spec-
ify and verify such predicates using other checking techniques, but doing this is not
necessary to benefit from the typestate formalism.

We survey typestate and protocol checking techniques in greater detail in Sec-
tion 4.5.1.

30

2.3. INSPIRATIONS

Connected

Closed

Bound

Raw

bind

connect

close

send

receive

bind

new Socket

Figure 2.3: Typestate diagram for a socket implementation

1 class Socket {
2 Socket() this:->@raw { ... }
3 bind() this: @raw->@bound, this: @closed->@bound { ... }
4 connect() this: @bound->@connected { ... }
5 close() this: @connected->@closed { ... }
6 send() this: @connected { ... }
7 receive() this: @connected { ... }
8 }

Figure 2.4: A socket implementation in a hypothetical object-oriented language

31

CHAPTER 2. THE DESIGN OF POPLAR

2.3.2 AI planning

The AI planning problem is the problem of identifying a sequence of actions that es-
tablish a given goal state from a given starting state. Typically, a set of actions is
available, and their effects, as well as the goal and starting conditions, are specified in
some kind of domain logic. Normally actions may conflict with each other by undoing
each other’s effects. If not, then the order in which actions are executed is irrelevant,
and solving the planning problem would then be very simple. The presence of con-
flicts means that the search space becomes considerably larger, and heuristics are often
needed to speed up the search.

AI planning is widely applied in domains such as artificial intelligence and robots,
industrial systems, including industrial process planning, and web service composi-
tion [21]. It is often a natural way of modelling problems that occur in the physi-
cal world. A classic example is a ”blocks world” problem, in which a robot moves
around in a landscape where blocks have been stacked in different ways. The robot
can move blocks around, stack them on top of each other and so on, and the problem
to be solved is often specified as a combination of blocks that are to be stacked in a
certain way [100, p. 370] Broadly speaking, AI planning algorithms can be divided
in two classes: plan-space algorithms, which search the space of all possible plans,
and state-space algorithms, which search the state of all possible states that may be
achieved.

We discuss related work in the field of AI planning in Section 7.1.3.

2.3.3 Prospector: fragment mining and assembly based on types

In [75], Mandelin et al develop the notion of jungloid synthesis. Observing that users of
APIs often have difficulties in learning how to convert from one type to another (or how
to construct a given type in a particular context), they have built an interactive system,
Prospector, for the Eclipse platform that attempts to synthesize type conversions. For
synthesis, a query is needed. A jungloid query is a pair (τin, τout), where τin and τout
are class types.

Such a query asks the question ”given that type τin is visible in our con, how can
we construct type τout ”? They then solve these queries by composing elementary jun-
gloids. Examples of elementary jungloids are field access, static method or constructor
invocation, instance method invocation, widening reference conversions (implicit up-
casts) and downcasts. By composing a sequence of these, we obtain a series of Java
statements.

When using this approach to synthesis, there is no guarantee that the resulting
code will have the desired effects when executed. Jungloid synthesis is ultimately
constrained only by the type system. There is also potentially a very large set of so-
lutions for a given query. In order to ensure the usefulness of the results, the authors
employ a heuristic which, for instance, favors short solutions over long solutions. It
also mines existing code in order to discover which downcasts are safe to make. Fi-
nally, since it is an interactive tool, users are able to choose the result they want from a
list of candidates.

Despite the simplicity of the approach, jungloid synthesis appears to be a useful
technique: in 18 out of 20 test cases, the desired code fragment was among the top 4
results generated by Prospector, and the mean time spent finding results was 0.23s per
query.

32

2.4. THE ELEMENTS OF POPLAR

2.4 The Elements of Poplar

In Section 2.3 we listed several existing fields and systems that inspired the way we
approach the problem of Java component integration. Our working hypothesis is that it
is possible to construct a Java language extension that uses stateful labels and planning
algorithms to construct evolvable component integration links. In this section we show,
step by step, the design of Poplar, the language we will use to test our hypothesis.

2.4.1 Labelled variables
The fundamental building blocks of Java interfaces are method and field declarations.
Field declarations can be seen as relating two values, owner and field, to each other. In
contrast, a method having a void return type with n parameters relates n + 1 different
values to each other, and n + 2 values if it has a non-void return type. This interre-
latedness of values encoded by interfaces leads to many of the problems mentioned
above. As a first attempt at breaking them down, we may attempt to select field owners
(message receivers) and method arguments automatically in some fashion.

New users of a Java library, who are not familiar with its correct usage, often use
type information to guess how to produce the results they desire. This tendency was
exploited in Prospector [75]. For very specialised types, the valid combinations of
interface fragments are so few that a correct solution can be found relatively quickly
by simply looking at the permitted type of each argument and receiver. This is not
the case for very general types, such as String and int, however. Clearly, a String can
represent a wide range of data, such as a person’s name to a file name or a URL, and
an integer could represent an account number, the height of a building, or the current
time of the day. Type information alone is not enough for correct selection. Based on
this observation, we introduce labelled variables as a fundamental element of Poplar.
Labels refine the constraints imposed by the type system such that correct candidates
for method receivers and arguments can be selected unambiguously. The technique
of argument selection by labels has previously been applied in the context of labelled
lambda calculus [1, 38, 39] and OCaml. We are not aware of any existing application
of this idea in Java.

As an example of how this might work, consider the standard library API for getting
the time and date in Java. It changed substantially between version 1.4 and version 1.5
of the language. In version 1.4, the following code was used to obtain the current hour
of the day:

1 Date now = new Date();
2 int hour = now.getHour();

In Java 1.5 and later versions, the following code is used:

1 Calendar now = Calendar.getCalendar();
2 int hour = now.get(Calendar.HOUR_OF_DAY);

We could capture this information in labels with Java 1.4 as shown in Figure 2.5.
Here, tags is our term for labels that are immutable, that cannot be erased. (In Sec-
tion 2.4.4 we will introduce properties, which are labels that can be established and
erased while the program executes.) The tag nowHour identifies an integer that rep-
resents the current hour of the day (at the time when the value was produced). By
declaring this tag in the interface TimeAndDate, and requiring all users of the label to
use this interface, we can disambiguate between different labels with the same name,
a standard procedure for Java declarations. The declaration for the Date constructor

33

CHAPTER 2. THE DESIGN OF POPLAR

1 interface TimeAndDate {
2 tags(int) nowHour, nowMinute, nowSecond;
3 }
4
5 class Date implements TimeAndDate {
6 tags currentTime;
7 Date()
8 result: +currentTime. { ... }
9 int getHour()

10 this: currentTime,
11 result: + nowHour. { ... }
12 /* Similar annotations for getMinute(), getSecond(), etc. */
13 }

Figure 2.5: TimeAndDate annotations for Java 1.4

1 Class Calendar implements TimeAndDate {
2 tags(int) hourMarker, minuteMarker, secondMarker;
3 tags defaultTimeZone;
4
5 final int HOUR_OF_DAY(hourMarker) = 11;
6 /* etc. */
7
8 Calendar()
9 result: +defaultTimeZone. { }

10 int get(int selector)
11 this: defaultTimeZone,
12 selector: hourMarker,
13 result: nowHour). {...} /* Similar, alternative annotations for

minute, second etc */
14 }

Figure 2.6: TimeAndDate annotations for Java 1.5

says that the returned value will have the tag currentTime. Finally, the declaration for
the getHour method says that assuming that the owning object has the currentTime
label, the return value will be an int variable with the label nowHour.

And in Java 1.5, as shown in Figure 2.6. This code uses the same labels as before,
but the API is structured differently. However, it is still possible to request an int
variable with the label nowHour in order to obtain the current hour.

2.4.2 Queries
The fundamental unit of composition in Poplar is the declarative integration query.
A query requests either the production of a variable with a label or a set of labels,
or the transformation of an existing variable so that it acquires a new label. Given a
query, it is possible to use a search algorithm to find a solution that satisfies it, within
any constraints specified by the surrounding method’s signature, in terms of resource
mutations and property changes.

In Figure 2.5 and Figure 2.6 we showed Poplar-annotated time and date compo-
nents for Java 1.4 and Java 1.5, respectively. In order to integrate either of these service
components with a client component, the following query may be used.

1 class TimeUtils implements TimeAndDate {

34

2.4. THE ELEMENTS OF POPLAR

new Calendar()

get(int)

(Calendar,
defaultTimeZone)

(int, nowHour)

Start

Finish

Calendar.HOUR_OF_DAY

(int, hourMarker)

new Date()

getHour()

(Date, currentTime)

(int, nowHour)

Start

Finish

Java 1.4 Java 1.5

Figure 2.7: Visual representation of solutions to an integration query requesting the production
of the current hour, for Java 1.4 and 1.5, respectively.

2 void printHour() {
3 int hour = #produce(int, nowHour);
4 System.out.println("The current hour is: " + hour);
5 }
6 }

After planning has been applied, assuming the solution search succeeds, the solu-
tions might resemble the diagrams shown in Figure 2.7.

2.4.3 Partial order planning

The design of Poplar does not restrict the choice of planning or search algorithm that
is to be used for the code generation, but in early experiments on a prototype, we have
found Partial Order Planning (POP) to be a useful algorithm.

POP gradually refines a partial ordering of some set of actions. In principle, it
searches the space of all possible plans, instead of searching the space of all possible
states, as many planners do. POP is a good fit for the problem addressed here, be-
cause 1) Java statements are already in some sense partially ordered, through dataflow
dependencies for instance, and 2) POP is relatively easy to understand and influence,
and it should be a good fit for situations where some amount of human interaction
may be needed, for instance in tweaking annotations, disambiguating between values
and so on. The basic idea of the POP algorithm is that it gradually strengthens an or-
dering of actions, inserting causal links (connecting post- and preconditions of related

35

CHAPTER 2. THE DESIGN OF POPLAR

actions) and new actions as necessary while maintaining a set of open preconditions.
A backward search from the goal towards the initial condition is performed as follows.

• Step 1. Initialise the plan to have two pseudo-actions start and finish. The effects
of the start action are identical to the assumed environment of the plan, i.e. the
starting conditions. The preconditions of the finish action are identical to the
goals of the plan.

• Step 2. If there are no open preconditions, stop. A solution has been found.

• Step 3. Select an open precondition in the current plan.

• Step 4. For all available actions that achieve the precondition and are either al-
ready in the plan or not in the plan, create a successor plan with this action added.
Also add ordering constraints and causality links (which pair preconditions with
postconditions) for the new action.

• Step 5. For all the successors, resolve any conflicts among the causality links
that might have arisen by strengthening the ordering constraints. If this is not
possible, discard the successor.

• Step 6. Recurse on each successor plan. Go to step 2.

2.4.4 Properties
Unlike the labelled lambda calculus, Java is an imperative language, and expressions
may have side effects. Primitive variables and composite objects may change their
values and states over time. This makes it necessary to consider the temporal dimension
of labels: if labels are to represent the functional properties of a variable, they may need
to be introduced and removed as a result of program execution.

We have already discussed typestate checking (Section 2.3.1). Typestates corre-
spond to concrete configurations of the state contained in a class, but do not encode
their meaning in any description language. It is left to the programmer to ensure that
methods establish the conditions represented by typestates if they claim to do so, and
that methods do not expect any conditions beyond the declared expectations. Be-
cause they expose temporal constraints without exposing any implementation details
of classes, typestates are relatively easy to combine with the substitution-based be-
havioural subtyping principle expected by languages like Java. In [27], subclasses
may refine what a particular typestate means, for instance.

In Poplar, instead of using finite state machines, we introduce a more general con-
struct, which we term properties. A property is a label that may be established as well
as erased. Like a typestate, it implicitly corresponds to a predicate on the concrete
state of a class. However, since they are not expected to form a protocol, an object
may possess several properties simultaneously. A class with n properties will have 2n

possible configurations. Accordingly, methods may express invariants, preconditions
and postconditions as sets of properties instead of as single states. They are not entirely
unconstrained, however: we will describe below how we combine them with an effects
system to simplify the task of keeping track of which properties of an object are intact
at any given time.

We also introduce composite properties, which is a higher level property that, for a
given class, combines a set of lower level properties. This is reminiscent of Yellin and
Stroms original typestate concept [110] in the sense that it allows us to describe trees of

36

2.4. THE ELEMENTS OF POPLAR

properties inside classes, where higher level, more composite properties clearly denote
a greater degree of initialisation, in a sense, and lower level properties a lesser one.

We thus have two kinds of labels in Poplar: tags, which are immutable and do not
change over time, and properties, which may change over time, according to principles
that we describe below. These labels help refine the type system to a point where we
will find it practical to select methods, fields and method arguments automatically. This
forms the basis of Poplars automated integration technique.

2.4.5 Resources and effects

We mentioned above that properties may be established as well as erased, and that
an object may have any number of properties at a given time. In addition, subclasses
may define new properties not possessed by their superclasses. In order to integrate
this concept elegantly with the subtyping constraints expected in an imperative object-
oriented language like Java, it is necessary to encapsulate the properties somehow.
Clearly, when we view an object at the level of one of its superclasses, we might in-
voke a method that ends up erasing or establishing many properties at the level of the
subclass, through dynamic dispatch. Subclassing and method overriding would be im-
possible if we were forced to document this in full detail at every level in the class
hierarchy. In order to address this problem, we adapt Boyland and Greenhouses side
effect tracking system, which is based on abstract regions [46].

Boyland and Greenhouse’s system is motivated by a desire to track reads and writes
of variables. In order to be able to do this without exposing implementation details,
they define abstract regions, which are sets of concrete fields. Instead of annotating
each method with information about which fields it may potentially read or write, they
annotate it with information about which regions it may read or write. This permits
subclasses to add more state to a region without necessarily changing the effect sum-
maries of methods, making method overriding natural. In Poplar, however, we are not
interested in tracking reads and writes of fields - rather, we are interested in the addi-
tion and removal of properties. One way of adapting the Boyland-Greenhouse system
might be to describe, for each property, which concrete fields of a class it may establish
its predicate in. But this is imprecise in the case where a field may be used to imple-
ment multiple different properties in subtle ways; for instance, if separate properties
are established in separate parts of an array, or in separate bits of an integer. It seems
undesirable and inflexible to develop a specification language that describes precisely
exactly what parts of what variables may be used for a particular property. In addition,
concrete state changes cannot be tracked through field accesses if they are implemented
in native code. For example, all I/O in Java, including opening, closing, reading and
writing files and sockets, is implemented in native libraries using the Java Native In-
terface (JNI). Concrete implementations, which may be written in a wide variety of
programming languages, back the corresponding Java methods. Therefore, instead of
grouping fields into abstract regions, we group methods into abstract resources. We
also associate properties with resources. Any invocation of a method in a resource is
considered to nullify all of the properties associated with that resource, except for those
properties that the method declares that it preserves or establishes.

Throughout our design we have used behavioural subtyping and the substitution
principle as a guideline: subtype objects must always be able to take the place of any
of their supertypes [73]. We integrate resources with properties by using the following
principles.

37

CHAPTER 2. THE DESIGN OF POPLAR

Well-defined mapping from properties to resources. For each property that we de-
clare, we must know which property or which properties it may be established
in, and hence whose mutation it would be sensitive to. We establish this mapping
in code by declaring properties inside declarations of resources. If a property is
declared in more than one resource, it is considered to be sensitive to mutations
of both.

Well-defined mutation summaries of methods. As with regions in the Boyland-Greenhouse
system, each method must declare the set of resources that it may potentially mu-
tate. Together with the mapping mentioned above, we can use this information
to ascertain whether a given method may potentially destroy a given property.

Substitution principle. Again, analogous to the Boyland-Greenhouse effect system,
we allow subclasses to redefine resources and properties as long as they do not
contradict superclass definitions. For instance, subclasses may add more state
to a given resource. Properties may be defined in terms of different state or a
different predicate on the same state. The only thing that is not permitted is
moving a property or a field into a different resource.

An example of properties and resources may be seen in Figure 2.8. The class Door
has four properties in two resources. In theory there are 16 possible configurations.
However, the designer has intended @closed and @open to be mutually exclusive
properties, as well as the @unlocked and @locked pair. We do not provide a way
to express this; the class designer must ensure that impossible combinations cannot be
established. In the example we show it is indeed impossible: for example. there is
no method that establishes @open without also erasing @closed. The method open
implicitly mutates the resource this.main, so any property in that resource that has not
been specified as an invariant or a postcondition of the method is assumed to be lost.

The constructor initially sets up the class to be @unlocked and closed. The de-
fault state for a new object with no specification associated with its constructor is to
have no properties at all.

The methods lock, unlock, open and close are considered to implicitly mutate the
resources that they have been declared in. However, the method closeAndLock has
been declared outside of these resources and must declare the resources that it mutates.

Notice that some methods have specifications like ++@open while others have
+@open. The former is called a basic establisher or a direct establisher. Only such
methods are allowed to directly mutate the state that corresponds to the property. The
latter kind of method is called an indirect establisher. For such methods we know
that a direct establisher will eventually be called, directly or indirectly, and the Poplar
compiler verifies that this indeed happens.

Label signatures and mutation of resources

In order to conveniently reason about the effects of expressions and statements more
correctly, we use the concepts of label signatures and mutation summaries. We for-
malise these concepts and their usage in Section 4.2.1; here we informally give the
intuition behind them.

Label signatures are triplets of three sets: LS = (LS+,LS=,LS−), where for a
given Java fragment, the sets contain all the known additions, invariants and subtrac-
tions of labels, respectively. Additions correspond to ++ and + prefixes, subtractions
correspond to a - prefix, and invariants correspond to no syntactic prefix (indicated by =

38

2.4. THE ELEMENTS OF POPLAR

1 class Door {
2
3 resource lock {
4 properties @unlocked, @locked;
5 private boolean isLocked;
6
7 //these two methods implicitly mutate this.lock
8 void lock() this: @closed, ++@locked. { isLocked = true; }
9 void unlock() this: @closed, ++@unlocked. {isLocked = false; }

10 }
11 }
12 resource main {
13 properties @open, @closed;
14 private boolean isOpen;
15
16 //these two methods implicitly mutate this.main
17 void open() this:@unlocked, ++@open. { isOpen = true; }
18 void close() this:@unlocked, ++@closed. { isOpen = false; }
19 }
20
21 void closeAndLock() mutates this.main, this.lock:
22 this: +@locked, +@closed. {
23 close(); lock();
24 }
25
26 Door() result: ++@unlocked, ++@closed. { isLocked = false; isOpen =

false; }
27 }

Figure 2.8: Example of properties and resources.

in LS=). Thus, methods with Poplar specifications, like the ones we saw in Figure 2.3,
each have a corresponding label signature.

Mutation summaries describe what resources are mutated by the invocation of
a method. Resource mutation corresponds to a change in the underlying data that
properties in that resource describe. We reason about such a change conservatively: if
there is no label signature at all, all properties are considered to be lost when a mutation
occurs. If the label signature describes additions and invariants, these properties will
become or remain established after the mutation. Thus, it is not necessary for the
label signature to be fully precise, as long as mutation summaries definitely capture
all possible resource mutations, given that we accept underestimating the label sets of
variables. A lack of precision may translate to the inability to automatically construct
some integrations, but not into unsound code.

A label signature and a mutation summary (LS, ρ) together describe a fragment’s
effects in a composable way. Consider the following examples, based on the Socket
class in Figure 2.3.

1 Address a, a2;
2 //...
3 Socket s = new Socket(); //s: @closed
4 s.bind(a); //s: @closed, @bound; mutates s.state
5 s.connect(a2); //s: @open; mutates s.state

Here we have shown the properties that are established after each statement has
executed. Note that @bound is lost implicitly due to the resource mutation of this.state
at s.connect. There is no explicit -@bound annotation.

39

CHAPTER 2. THE DESIGN OF POPLAR

1 Socket s = new Socket(); //({s: @open}, {a:connectionAddress, a2:
connectionAddress}), {s.state}

2 s.bind(a); //({s: @open}, {a: connectionAddress, a2:connectionAddress},
{s: @closed}), {s.state}

3 s.connect(a2); //({s: @open}, {a:connectionAddress, a2:
connectionAddress}, {}), {s.state}

Now we have annotated each statement with the (LS, ρ) pair obtained by consid-
ering that statement and the following statements together. We call this operation
chaining. Thus the (LS, ρ) pair at s.connect describes that statement only, while the
(LS, ρ) pair at new Socket describes the effects of all of the three statements. This
can be read as: ”the fragment adds the property @open to the variable s, given that
a and a2 have the tag connectionAddress. The resource s.state will be mutated.”
This is enough information to understand the effects of the statement sequence and to
combine it with effects of other statements.

2.4.6 Fragment specifications
A label signature and a mutation summary together fully describe a statement or a code
fragment, both in terms of its useful effects and its potentially destructive side effects.
As we have seen, they can be sequentially composed to express the effect of executing
fragments in series. We obtain a lower bound on the labels that will be established and
an upper bound on the labels that will be erased by a fragment. We may refer to a pair
of a label signature and a mutation summary as a method contract (if associated with a
method) or a fragment specification.

Consider a fragment of Java code that contains only method invocations, construc-
tor invocations, field reads and writes and assignments - in particular, one that does not
contain flow control statements such as branches (if, for, while, switch, etc.) and excep-
tion throws. If each statement has an associated Poplar signature, which describes what
properties are assumed and altered for each operand and for any return value, as well as
which resources are mutated for these variables, we are able to infer the Poplar signa-
ture of the entire fragment by inspecting the signature of each statement contained in it.
For resource mutations, we simply take the union of the mutation set of each statement.
For property changes to variables, we may track each variable throughout the fragment
and remember the set of properties it has after each statement has been executed. Note
that new variables may be created in the course of executing the fragment. In Chapter 4
we will in fact develop support for inferring specifications of if-statements, but not for
the other control flow constructs.

A consequence of being able to infer the specification of a fragment is that we will
be able to inspect a method and confirm that the method body is valid with respect to a
given method contract.

2.4.7 Benefits of the resource and effect model
We have two main reasons for using a nonstandard model instead of a standard types-
tate formalism. First, properties and resources are a particularly good fit for planning.
It is very easy to map Java methods to actions in a planning domain, since we can know,
by inspecting the mutation summary of a method, whether a given property might be
destroyed by it or not. This means that by extension, we can know whether a causal
link in a plan (a link between some action’s effect and another action’s precondition)
might potentially have a conflict with a given action.

40

2.4. THE ELEMENTS OF POPLAR

Second, properties are very well suited to the problem of software evolution in that
they allow us to specify methods as bounded ranges rather than precise specifications.
As we have seen, a label signature and a resource mutation together form a lower and
an upper bound. The relation between a stronger and a weaker specification is im-
mediate and very easy to compute: it suffices to check if the labels being established
are a superset of a specified set, while resource mutations are a subset. This has the
additional benefit that client queries do not need to match states precisely. In a classi-
cal typestate formulation, each state is an atomic name. If we had used this approach,
we would have been less able to evolve client and service components independently.
When clients request a set of labels, any method that happens to provide that set, or
a supserset of it, as a postcondition is potentially able to satisfy it. In Figure 2.9 we
show two separate socket implementations, one that is general and one that supports
IPV6. The class Client contains two queries. The query in m can be satisfied by either
of the two classes, but the query in n can only be satisfied by the class IPV6Socket.
This class provides stronger guarantees about the effects established by its methods,
in the form of additional established labels. In this case, properties like @connected
and @ipv6Connected have a refinement relationship: the latter is understood as a re-
finement of the former. This kind of relationship is not necessary, in fact no particular
relationships among labels are assumed, although this is one of many possible relation-
ships. It is the responsibility of programmers to manage and communicate the precise
meaning of labels, although one could imagine some kind of tool support for this in the
future.

It should also be noted that it is easy to encode classical typestate protocols in our
formalism. In the Socket class we encode the Socket protocol from Figure 2.4 in our
specification language. Essentially, each transition @a → @b now takes the form -
@a, ++@b, or -@a, +@b for an indirect transition, assuming that @a and @b are in
the same resource. In a sense, properties in a given resource may be thought of as being
very simple orthogonal state machines with only two possible states, and by providing
method specifications, these are composed to form more complex transition systems.

2.4.8 Uniqueness
Imperative object-oriented languages such as Java have freely assignable pointers, giv-
ing rise to the problem known as aliasing: at any given time, an object may be pointed
to by any number of references, and it is usually nontrivial to determine whether two
pointers may point to the same object or not at a given time. In order to reason about
the state of objects in a language like Java with an acceptable level of precision, it is
necessary to address this problem in some way. A wide range of different techniques
have been attempted, including islands [51], balloons, ownership [24] and fractional
permissions [15, 20].

Since we would like to focus on evaluating our approach without unnecessary
complications, at this stage, we take a simplistic approach, based on annotating refer-
ences with uniqueness kinds. This simply classifies references into three basic classes:
unique, maintain and normal. Unique references are logically unshared and cannot
be accessed through any other reference (with certain exceptions, which we discuss
below). In addition, once a reference is considered to be unique, it cannot become
non-unique. Maintain references may be aliased, but they will not acquire any further
aliases in the future as a result of program execution. Maintain is strictly a weaker
condition than unique. Fresh references are new, and can be reassigned to another
uniqueness kind once. Finally, normal references, which have no annotation, are con-

41

CHAPTER 2. THE DESIGN OF POPLAR

1 //Standard implementation
2 class Socket implements ISocket {
3 resource state {
4 properties @raw, @bound, @connected, @closed;
5 Socket() this:++@raw. { ... }
6 bind(Address a) this: -@raw, ++@bound. { ... }
7 connect() this: -@bound, ++@connected. { ... }
8 close() this: -@connected, ++@closed. { ... }
9 send() this: @connected. { ... }

10 receive() this: @connected { ... }
11 }
12 }
13
14 //IPV6 implementation
15 class IPV6Socket implements ISocket {
16 resource state {
17 properties @raw, @bound, @connected, @closed,
18 @ipv6Connected, @ipv6Bound;
19 Socket() this:++@raw. { ... }
20 bind(IPV6Address a) this: -@raw, ++@ipv6bound, ++@bound. { ... }
21 connect() this: -@bound, -@ipv6bound, ++@ipv6connected, ++

@connected. { ... }
22 close() this: -@connected, -@ipv6connected, ++@closed, ++

@ipv6closed. { ... }
23 send() this: @ipv6connected. { ... }
24 receive() this: @ipv6connected. { ... }
25 }
26 }
27
28 class Client {
29 //Can be satisfied by Socket and IPV6Socket
30 void m() { ISocket s = #produce(ISocket, @connected); }
31 //Can be satisfied by IPV6Socket only
32 void m2() { ISocket s = #produce(ISocket, @ipv6Connected); }
33 }

Figure 2.9: Encoding the socket protocol with resources and properties

42

2.4. THE ELEMENTS OF POPLAR

Kind Assumption Guarantee
Normal None None
Unique No aliases No future aliases

Maintain None No future aliases
Fresh No aliases None

Figure 2.10: Uniqueness kinds used in Poplar

servatively assumed to be aliased. Figure 2.10 summarises the assumptions and guar-
antees for these uniqueness kinds.

Annotations such as unique and maintain apply to heap (static) references only.
Temporary (dynamic) aliases may be created, even from restricted references, as a
result of method invocation and argument passing, for instance. We will restrict such
dynamic aliases to prevent accidental simultaneous access to two ”unique” references
to the same object.

It should be noted that our implementation supports destructive reads, which adds
two more uniqueness kinds. We discuss this in Section 5.6.

We discuss existing work on alias confinement in Section 4.5.3.

2.4.9 Workflow
The basic workflow of Poplar is illustrated in Figure 2.11. Initially, a new system is
designed. At this point, the system may contain client components, which contain
integration queries, and service components, which provide building blocks that can
satisfy queries. The same component may be both a service component and a client
component. The Poplar compiler attempts to satisfy the integration queries. If this
fails, there are no solutions, and the system must be redesigned accordingly. If this
succeeds, the system has been integrated and is ready for use.

At some point in the future, either the client components or the service components
may change. A semantic or syntactic change should be accompanied by a change in
the corresponding Poplar annotations. Following such a change, the Poplar compiler
is run to verify that integration links are still valid. If they are, the new interface is
compatible with the old one. Semantic breaking changes, if any, are trapped at this
stage, and in this case the verification fails. The verification also fails if the new inter-
face is syntactically incompatible with the old one. In both cases, a reintegration can
be attempted. The reintegration attempts to generate new solutions to the queries using
the updated components. If this succeeds, the system is again ready for use. If this
fails, the changes are too substantial for Poplar to overcome, and the system must be
redesigned again.

From this figure, we can identify three functions that a Poplar compiler should
perform: method contract verification, generation of integration links and integration
link verification. Our implementation performs the former two (see Chapter 5). In
addition, we describe how integration link verification could be implemented as a future
extension.

2.4.10 Modularity of analyses and transformations
Java supports local typechecking and compilation by design. This feature is essential to
its success as a language for scalable software development, which potentially involves

43

CHAPTER 2. THE DESIGN OF POPLAR

New
system
design

(Re)generate
integration links

from queries
(automated)

Client
component

changes

Update client-side
Poplar

annotations

Service
component

changes

Update service-
side Poplar
annotations

System OK
Verify

integration
links

(automated)

Redesign
system

Fail

Succeed
Fail

Succeed

Start

Verify
method

contracts
(automated)

Debug

Fail

Succeed

Figure 2.11: The Poplar software development workflow

large teams and many different libraries in a given software system. When a source
file changes, it is sufficient to inspect the source code of only that file (typically a
single class or interface), and to inspect compiled type signature information of any
type directly referenced by that file, in order to recompile it. Unlike in languages like
C and C++, there is no mechanism for directly including a source file in another.

Since we would like Poplar to act as a preprocessor for Java, we require that all of
our analyses and transformations should work, in this regard, in the same way as Java
compilation. That is, we would like to be able to compute analysis results for a source
file based on the source code in that file only, as well as precompiled summary infor-
mation for any files directly referenced by that file. Poplar makes use of the following
analyses.

Generation of integration links. The principal Poplar integration method is replace-
ment of declarative queries by solutions to them, which are found by a search
algorithm.

Checking of integration links. When classes that were used as part of a particular
integration link have changed, and when these changes are visible in their API,
including in the Poplar annotations of said API, it is necessary to check that the
integration link is still valid with respect to the new version of the API. If it is
not, then it needs to be regenerated.

Mutation checking. Every Poplar method is annotated with a mutation summary,
which lists the abstract resources that may potentially be mutated by that method.

44

2.4. THE ELEMENTS OF POPLAR

In this analysis, we must ensure that the mutation summaries do not omit any mu-
tation. That is, if method m1 calls method m2, and method m2 mutates resource
r, then we must ensure that m1 also reports the mutation of r.

Label checking. For every invocation of a Poplar method, we must make sure that the
necessary labels of the receiver and the arguments have been set up prior to the
invocation, if the method declares preconditions.

We will see in Chapter 4 that all of these analyses can be performed locally for
each method by using summary information about methods from other classes. The
summary information that is needed is the Poplar signature of each method and field
being referenced in other classes. This is analogous to Java compilation, where the type
signature for each method and field that is being referenced from the current source file
is needed. In theory, a Poplar compiler can easily store Poplar signatures in Java class
files without breaking compatibility with existing tools, since class files support any
number of nonstandard attributes.

2.4.11 Summary
Poplar adds several features to the Java language. The most fundamental idea is a
labelling of variables according to their valid uses with various APIs. Some labels,
called tags, are immutable, while properties are typestate-like in that they may be es-
tablished and erased during program execution. This labelling provides the basis of the
flexible approach to component interdependencies that we introduce: as API:s change
structurally, labels stay the same if there has been no functional change to a particular
value, and if there has been a functional change, the labels may also change, correctly
giving rise to a compilation error. An effect system inspired by Boyland and Green-
house’s abstract regions describes how properties may potentially be erased, allowing
us to conservatively track, for each variable, the set of properties that are live at each
point in the program. Methods have mutation summaries that describe which regions
they may mutate on which variables, from which we are directly able to infer the set of
properties that may be erased. A simple uniqueness system that tracks whether refer-
ences are unique and whether they will remain unique is introduced to help increase the
precision of the effect system. These features give rise to some subtle complications
when formalised, which we will discuss in the following chapter.

45

3
Language Reference

In this chapter, we discuss the various language elements of Poplar in detail. We seek
to provide a detailed understanding of Poplar semantics through natural language de-
scriptions. The following chapter use this chapter as a basis in order to describe in
detail, through a formalisation, how the Poplar checking and compilation mechanisms
work.

In general, we only specify those language elements that are novel in Poplar. The
other language elements already exist in Java, and we discuss them in so far as is
necessary to understand Poplar. The Java language specification may be consulted for
those details that we cannot provide here.

Along with the concepts in this chapter, we will also introduce the associated syn-
tax. Sometimes we use horizontal lines, such as x. In general, this means a repetition
in the form x1, . . . xn. We will treat x as a set when necessary, so we may write, for
instance, xj ∈ x.

The specification described here and in the next chapter is based on the Java core
calculus known as Middleweight Java, or MJ. MJ is constrained in several respects,
among them that it has no interfaces, abstract classes, generics, primitive types, arrays
or exceptions. Accordingly we will not specify Poplar with respect to such language
features.

3.1 Syntax

The version of Poplar that we discuss here, and that we also will formalise in the
following chapter, is called Poplar0. We first give its syntax in full and then discuss
individual parts in detail. Note that Poplar0 assumes that each method and constructor
has exactly one argument, but sometimes we will give example that have several. It is
straightforward to generalize Poplar0 to any number of arguments, at the cost of some
additional complexity. Also note that even though Poplar0lacks primitive types, we
will discuss how Poplar should treat primitives.

47

CHAPTER 3. LANGUAGE REFERENCE

Program
P ::= cd1 . . . cdn : s

Class definition
cd ::= class C extends C

{fd1 . . . fdk cnd rd1 . . . rdj
md1 . . .mdn}

Field definition
fd ::= C f [: ([@p1, . . . @pn →] l1, . . . lk)];

Resource definition
rd ::= resource r{properties @p1, . . .@pn;

fd1 . . . fdk}
Constructor definition, method definition
cnd ::= C (Ca xa)[ρ :][ls]{super(ea); s1 . . . sn}
md ::= τ m(Ca xa)[ρ :][ls]{s1 . . . sk}

Mutation summary, qualified resource
ρ ::= mutates qr1, . . . qrn
qr ::= r | any(C).r | x.r

Label signature, label condition, label
ls ::= x : lc1, . . . lcn;
lc ::= + + @p | +l | l | −@p | U
l ::= t | @p Tag, property

Uniqueness
U ::= fresh | unique | maintain

Return type
τ ::= C | void

Expression
e ::= x | null | e.f Variable, null, field access

| (C)e Cast
| pe Promotable expression

Promotable expression
pe ::= e.m(ea) | new C(ea) Method invocation, object creation

Statement
s ::= ; No-op

| pe; Promoted expression
| if (e == e){s1 . . . sk} else
{sk+1 . . . sn} Conditional

| e.f = e; Field assignment
| C x[: U] Local variable declaration
| x = e; Variable assignment
| return e; Return
| {s1 . . . sn} Block
| x = #produce(C,U, l1, . . . ln); Produce query
| #transform(x, l1, . . . ln); Transform query
| drop l1, . . . ln; Drop labels

48

3.2. LABELS

3.2 Labels

Label
l ::= t | @p Tag, property

Labels are either tags or properties. In both cases, they are identified by a unique
name declared inside a particular class: the label C.l is different from C ′.l. Resolution
of labels functions in principle in the same way as resolution of other Java class mem-
bers, so package names are also respected: pa1.pa2.C.l is different from pa1.pa3.C.l,
where pai are packages.

Poplar tracks the label sets of values (primitives or objects). Each value has a set of
labels at any given time. Poplar is allowed to underestimate the set of labels associated
with a value, but overestimating it is not allowed.

All labels can be used to model protocol states. For a type that can potentially
have n different labels, a value can be considered to be in one of 2n states, where each
state is a set of labels. It is possible to constrain the state space so that not all of these
combinations are permitted for a given type. We note here a difference with typestate
systems: typestates are usually atomic labels, but Poplar states are sets of labels. How-
ever, some typestate systems model explicit substates, which are not included in Poplar.
It is possible to simulate sub-labels without including them as a first class concept.

All labels have a temporal contract, which refers to the way that they are used
to model temporal states as sets of labels, and an external semantic contract, which
refers to what the user expects from a label. Users who write queries are expected
to have some idea about the meaning of labels that they request. This meaning can be
communicated formally or informally, just as Java API semantics can be communicated
to programmers formally or informally today. We believe that the notion of a label with
an external semantic contract, which users are expected to understand, is something that
has not previously been studied in typestate research.

3.2.1 Tags

Tags are the simplest form of labels. They are not associated with any mutable state on
the value they are associated with. They are intended for describing irreversible side
effects and for identifying constants. Tags have a well defined point of establishment
but no point of destruction.

3.2.2 Properties

Properties are, in a sense, a generalisation of typestates. In addition to having a tem-
poral contract and an external semantic contract, they also have an internal semantic
contract. This is a concrete predicate on the internal state of some object. It makes
no sense for primitive values to have properties, since their state cannot change. The
predicate that a property corresponds to is not defined explicitly, and it is up to the
programmer who specifies it to establish it correctly in methods that claim to do so.
Properties have both well defined points of establishment and well defined points of
destruction. The point of establishment is always a basic establisher method, and the
point of destruction is always a resource mutation. We will define these concepts in the
following sections.

49

CHAPTER 3. LANGUAGE REFERENCE

3.2.3 Example
In the following example, the class Socket has the properties @raw, @bound and
@open.

1 class Socket {
2 tags(byte[]) received;
3
4 resource state {
5 properties @raw, @bound, @open;
6 SocketAddress boundTo;
7
8 Socket() this: ++@raw. { ... }
9 void bind(SocketAddress bindPoint) this: -@raw, ++@bound. {

10 this.boundTo = bindPoint;
11 //...
12 }
13 void connect() this: -@bound, ++@open. { ... }
14 void send(byte[] data) this: @open. { ... }
15 byte[] receive() this: @open; result: ++received. { ... }
16 }
17 }

The external semantic contract of @open is that the socket is ready to send and
receive data. The external semantic contract of @raw and @bound is that the socket
is not ready for this. These notions are communicated informally to the user.

The temporal contracts of these properties are simply the set of valid method se-
quences. For example, it is valid to invoke connect after bind, but it is not valid
to invoke send unless connect has been invoked first. Just like in typestate check-
ing, these sets form a state machine. The temporal contracts help enforce the external
semantic contract in this case, though in general they cannot capture it fully. For ex-
ample, the tag received for byte[] has the external semantic contract that the data has
been received on a network socket. This fact cannot be enforced automatically.

The property @bound has the internal semantic contract that boundTo will ini-
tialised and correspond to the currently bound address. This contract is established and
maintained manually by the class designer.

3.3 Resources

Resource definition
rd ::= resource r{properties @p1, . . .@pn;

fd1 . . . fdk md1 . . .mdk}
Label condition, label
lc ::= + + @p | +l | l | −@p
l ::= t | @p Tag, property

fd: field definition, md: method definition, r: resource name

Abstract resources group related state and properties. The concrete data members
of a class that implement the property predicates of some set of properties may be
declared together with the properties themselves inside a resource. A property may be
thought of as a configuration of a resource in some class, rather than a configuration of
the class itself (however, properties are also allowed to extend their internal predicate
to state that is not part of any resource).

50

3.3. RESOURCES

For a given class, each property must be declared inside exactly one resource. This
establishes an unambiguous mapping from properties to resources.

Resources express label destruction: methods may be annotated with lists of mu-
tated resources, which gives an upper bound on the properties that may be lost as a
result of executing a given method. This is essentially a side effect summary. Re-
sources are also used to partially restrict mutation of an object’s state. Fields declared
inside a resource are part of that resource’s concrete state. These fields may generally
not be changed by methods that have not declared that they do so.

3.3.1 Resource access levels
Any given method may have one of three different access levels to a given resource.

No access. This is the case if the method does not declare that it mutates the resource.
The method may not change the resource’s concrete state directly, and it may
not invoke any other method that may be deemed to mutate this resource. The
method can be considered to have no side effects at all with respect to the given
resource.

Simple access. The method declares that it mutates the resource, but it has no annota-
tions of the form + + p@ in its contract (where @p is a property). The method
is allowed to invoke other methods that mutate the resource, but it cannot mutate
the concrete state directly.

Raw access. The method declares that it mutates the resource, and it has at least one
annotation of the form ++@p in its contract. This method must directly establish
the internal predicate of such properties, so it is allowed and expected to directly
mutate the concrete state. It is also allowed to invoke other methods that mutate
the resource. This is the strongest form of access. The method designer has full
responsibility for the method’s body corresponding to its contract.

3.3.2 Resource mutations
A resource is considered to be mutated when one of the following things occur:

• An unconstrained resource field (to be defined) in that resource is written to

• A method that claims to mutate the resource is invoked

• Labels of a constrained resource field (to be defined) are lost to such a degree
that the owning object also loses labels

If a method invocation may lead to any of the above cases occurring, it must report
a corresponding mutation.

3.3.3 Implicit mutations
If a method is declared inside a resource, it implicitly has simple access to the resource.
We call this an implicit mutation. Methods declared outside the resource must declare
any mutation of it.

3.3.4 Example
Please see the following section for an example.

51

CHAPTER 3. LANGUAGE REFERENCE

3.4 Fields

Field definition
fd ::= C f [: ([@p1, . . . @pn →] l1, . . . lk)];

f : field name

Poplar supports three kinds of fields: plain fields, unconstrained resource fields and
constrained resource fields. Plain fields are not associated with any resource, and mu-
tations or writes on them are untracked (unless there are aliased mutations). Resource
fields are associated with some resource.

3.4.1 Plain fields

Plain fields are declared outside of resources and have no checked relation to them, al-
though they may still be used explicitly by programmers to help implement properties.

3.4.2 Unconstrained resource fields

These are fields that are associated with a resource but without any constraints. Writes
and mutations are tracked and interpreted as mutations of the corresponding resource.

3.4.3 Constrained resource fields

Fields can be constrained to indicate that their state depends on the state of the owning
object. Sets of labels of the owning object may be associated with sets of labels on
the field. Because this constraint may apply recursively, it is possible to indirectly
constrain a deep hierarchy of fields through the top level object.

The labels of constrained fields can only be changed by methods that belong to
their owning object. This is necessary in order to enable encapsulation and modular
compilation; otherwise all methods of all classes would need to know about the full
constraints of all fields of all other classes. This restriction is enforced through the
mechanism of acceptable mutations (to be defined).

Constrained fields are implicitly unique. If they could be aliased, the mutation of
any object of some compatible type could potentially violate the constraints of many
different objects in remote heap locations.

The labels of a constrained field can never be violated with respect to the owning
object’s state. When a value is first assigned to the field, it must have the correct initial
label set. When constrained labels are lost, the corresponding state of the owning object
are lost simultaneously.

A resource designer may want to choose to use a constrained resource field, rather
than an unconstrained one, because they want to make the field available for use in
Poplar solutions, but they want to link the field’s labels to the owning object’s state.
On the other hand they are also less free to use such a field as they wish because of
the constraints. An unconstrained resource field gives more flexibility in its usage,
and have the benefit that mutations will be tracked properly, but cannot as easily be
integrated into solutions. Plain fields give full freedom but cannot be used in solutions
at all.

52

3.4. FIELDS

3.4.4 Example
In the following example, the class Message is using sockets to receive messages.

1
2 class Message {
3 int receiveCount = 0;
4 resource data {
5 properties @tsSet, @msgSet, @reset;
6
7 int timestamp: ((@tsSet) -> (msgTimestamp));
8 String message: ((@msgSet) -> (msgValue));
9 int msgId;

10
11 public Message(int timestamp, String message)
12 timestamp:msgTimestamp; message:msgValue;
13 result: ++@tsSet, ++@msgSet. {
14 this.timestamp = timestamp;
15 this.message = message;
16 }
17
18 void receiveFrom(Socket s) s: @open; this: ++@tsSet, ++@msgSet. {
19 timestamp = readTimestamp(s);
20 message = readMessage(s);
21 msgId = readMessageId(s);
22 receiveCount += 1;
23 }
24
25 void reset() this: ++@reset. {
26 msgId = -1;
27 timestamp = -1;
28 message = null;
29 }
30 } //End of resource data
31
32 //Explicit mutation, since declared outside resource
33 void indirectReset() mutates this.data: {
34 reset();
35 }
36
37 //Read data from the socket
38 int readTimestamp(Socket s) result: ++msgTimestamp. { ... }
39 String readMessage(Socket s) result: ++msgValue. { ... }
40 int readMessageId(Socket s) { ... }
41 }

The fields timestamp and message are constrained resource fields. If the owning
object, of type Message, has at least the property @tsSet, then these are guaran-
teed to have at least the labels msgTimestamp and msgValue, respectively. When
these fields are assigned, in the constructor and in the receiveFrom method, they have
sufficient labels to uphold this constraint. Note that the constructor, the receiveFrom
method, and the reset method are all declared inside the resource data. This means
that they mutate it implicitly. Thus, the properties @tsSet and @msgSet are lost by
the reset method. For this reason, reset is allowed to write values freely to msgId and
timestamp. since they have no constraints when these properties have been lost. The
fields’ state by the end of this method will be consistent with our expectation.

The field msgId is an unconstrained resource field, so methods that write to it must
have raw access to the resource data. reset has raw access, because of its ++@reset
annotation, so the write is permitted. However msgId is never constrained in terms of
what labels it should have.

53

CHAPTER 3. LANGUAGE REFERENCE

The method indirectReset must report that it mutates this.data since it is declared
outside the resource data, but invokes reset, which has raw access.

The field receiveCount is a plain field, which is entirely unconstrained, and any
method in the class may write to it.

3.5 Expression contracts

A label signature and a mutation summary together fully describe the preconditions
and effects of a statement or expression. We first describe these two concepts indepen-
dently, and then we describe operations that apply to them.

3.5.1 Label signatures

Label signature, label condition
ls ::= x1 : lc1,1, . . . lc1,i; . . .

xn : lcn,1 . . . lcn,j ;
lc ::= + + @p | +l | l | −@p | U

Label signatures are declared together with the methods that they apply to, and also
computed for each expression as part of method checking. They describe those label
set changes that occur as a result of invoking the method or evaluating an expression,
and that are not simple destructions. Simple destructions are captured by resource mu-
tations (described in the following section). Label signatures may contain the following
entries.

Direct addition, basic establisher A direct addition is denoted by ++l for some label
l. It indicates that the method is directly establishing a property by changing
the associated resource state. The programmer guarantees that this happens and
takes responsibility for it being done correctly. A method annotated with + + l
for some label l is called a basic establisher for that label.

Addition An addition is denoted by +l. It indicates that the method is indirectly
establishing a property by invoking another method that is annotated with either
+l or + + l. Thus, +l ultimately corresponds to the invocation of some method
annotated with + + l, save for the case of infinite recursion (which we cannot
detect). It is not mandatory to report all the labels established by a method.

Invariant An invariant is denoted simply by l. It indicates that the method needs
the label as a precondition and that it will remain intact following the method’s
invocation. If a label is erased and established again, the invariant is not satisfied.

Subtraction A subtraction is denoted by −l. It indicates that the method needs the
label as a precondition and that the label will be lost following the method’s
invocation. Precondition labels that are lost and established again are also ex-
pressed as −l: we do not distinguish between these two cases.

Direct additions are only included in label signatures that are part of method decla-
rations. Label signatures for general expressions and statements, which are computed
by the compiler rather than written manually, only have additions, invariants and sub-
tractions.

54

3.5. EXPRESSION CONTRACTS

Label signatures may be thought of as providing a lower bound on labels that an ex-
pression or statement establishes. Invariants must be reported exactly, and subtractions
may be over-reported (although there is no benefit in doing so).

3.5.2 Mutation summaries

Mutation summary, qualified resource
ms ::= mutates qr1, . . . qrn
qr ::= r | any(C).r | x.r

r: resource name

Mutation summaries are sets of mutated resources, together with a mutation sub-
ject. Mutation subjects can be of the form any(C), which signifies any value of type C,
or x, which is a single variable. Like label signatures, mutation summaries are declared
together with the methods that they apply to, and also computed for each expression as
part of method checking. A mutation of any(C).r is interpreted as removing all proper-
ties in resource r from values of type C or a subtype. A mutation of x.r is interpreted
as removing those properties from the variable x. In both cases, properties that belong
to the addition, invariant or direct addition sets of any associated label signature are
exceptions from this removal.

Mutation summaries may be thought of as providing an upper bound on labels that
are lost as a result of evaluating an expression or statement.

3.5.3 The chaining operation
The chaining operation is used to compose the contracts of two expressions when one
is executed before another, yielding an overall contract that describes the execution of
both. This can be used in statement sequences such as s1; s2 to describe s1 executing
before s2, but also within expressions such as a method invocation e0.m(e1, e2),
where e0 is evaluated first, then e1, and finally e2, before the method m itself can be
invoked.

The formal definition of the chaining operation is given in Section 4.2.1. Here
we would simply like to give an intuition for how the operation works and what it is
supposed to do. We use the symbol LS to refer to a label signature, and ρ to refer to
a mutation summary. Given a first contract (LS1, ρ1) and a second contract (LS2, ρ2),
we would like to compute the resulting overall contract, (LS, ρ). We use the symbol ⊕
to denote the chaining operation: (LS1, ρ1)⊕ (LS2, ρ2) = (LS, ρ).

In order to compute the resulting contract, we must compute LS and ρ. ρ is the
simplest: it is simply the union of ρ1 and ρ2. There are some special cases involving
renaming of values (such as writing to fields and to variables), which make this slightly
more complicated, and we will return to this later. In order to compute LS, we need to
compute additions, invariants, and subtractions. We may note the following.

• If the postconditions of the first contract satisfy some preconditions of the sec-
ond contract, those preconditions can be removed from the overall result, since
they do not need to be provided externally. Otherwise they must be included as
preconditions (invariants or subtractions) in the overall result.

• If the second contract needs a precondition that the first contract does not provide
as a postcondition, and the first contract also mutates a resource that this label

55

CHAPTER 3. LANGUAGE REFERENCE

is in, then there is no possibility of passing the label from outside, through the
first contract and into the second contract. The label would always be lost prior
to its intended use. In this case the second contract’s precondition can never be
satisfied, and it makes no sense to chain the two contracts in this situation. The
expressions that these two contracts correspond to should not be evaluated in
sequence.

• Additions from the first contract that are not erased by the second contract may
be viewed as additions of the overall fragment.

• Preconditions of the first contract are always preconditions of the entire frag-
ment.

We refer to Section 4.2.1 for the full details of this operation.

3.5.4 The alternation operation
Alternation is used to compose contracts when either one of two possibilities will be
executed, but we do not know which one. The only application of this operation is in if-
statements, where we cannot know statically which branch will be taken. Clearly, if the
contracts of two alternate branches differ greatly, the precision of the overall analysis
will be poor. The definition is given at the end of Section 4.2.1.

3.5.5 Subsumption of contracts
Given two contracts (LS1, ρ1) and (LS2, ρ2) we define the subsumption relation:

(LS1, ρ1) ≺ (LS2, ρ2)

This relation is true whenever the first contract can take the place of the second: in
method overriding, in query solving, in method body checking, and so on. The defini-
tion is given in 4.2.5. This can be seen as a formalisation of the substitution principle
in subtyping. For example, if (LS1, ρ1) ≺ (LS2, ρ2), then the former contract must
have the same or fewer mutations, it must establish the same or more labels, and it
must assume the same or fewer labels.

3.6 Uniqueness of references

Uniqueness
U ::= fresh | unique | maintain

In order to reason about aliasing, we constrain references according to their unique-
ness kinds. We distinguish between dynamic aliases, which are created on the stack as
a result of method invocation (for instance, as return values or method arguments) and
static aliases, which are stored on the heap, in fields. For Unique references, at most
one static alias exists at any one time. For Normal references, any number of static
aliases may exist. Dynamic aliases may always be created, but they are constrained to
avoid exposing two Unique references that actually point to the same object.

Uniqueness kinds can be used to gain additional precision in the analysis and so-
lution finding done by Poplar. In particular, mutations are defined with respect to the

56

3.6. UNIQUENESS OF REFERENCES

uniqueness kinds of method receivers and arguments. Unique mutations need not be
reported globally, but non-unique mutations potentially have a global effect across the
entire program. At compile time, Poplar checks the correct use of uniqueness kinds,
and incorrect creation or use of aliases and references will be trapped as an error. The
user may want to change the uniqueness kinds of some variables when such errors are
caught, or when no solution can be found for a query due to excessive mutations.

The uniqueness kinds are as follows.

Fresh References to new objects are always Fresh . We enforce this when reasoning
about constructor invocations. Accordingly, constructor bodies may not create
any static aliases of the object that is being initialised. When fresh references are
assigned to a variable or field for the first time, they must be converted into some
other uniqueness kind. Any of the other three kinds are valid.

Unique Unique references have at most one static alias. A unique reference cannot
be assigned to a field or a variable, although it can be used as an argument or
receiver in method invocations and constructor invocations. Unique fields and
variables must initially be populated by Fresh references.

Maintain Maintain references may be either Normal or Unique . That is, static
aliases may exist. To preserve the uniqueness guarantee for unique, no new
aliases are created. When a Maintain value is used, it is assumed to potentially
have aliases. When method arguments or receivers are of the kind Maintain
, they are polymorphic and may receive as input either Normal , Unique or
Maintain references.

Normal Normal references have no special syntax and are assumed to potentially be
aliased. They are entirely unconstrained in that we may always create new aliases
of them.

When a method or constructor is invoked, the receiver (if any) and the method
arguments are called the input variables. When we invoke a method, we check that
any Unique expressions that are passed in are passed in only once. This guarantees
that the receiving method will never see two Unique variables that point to the same
object. This is called non-repetition of unique inputs.

When a Unique expression is obtained from an object x that is Normal or Main-
tain , either as the return value of a method invocation or as a field access, we conser-
vatively assume that the obtained expression is of the kind Maintain . This is because
the caller might be holding two different references to the same object x and access
the same Unique value through it on two different paths. Conservatively treating such
expressions as Maintain again prevents the danger of having two Unique expressions
that point to the same object. Thus, the only way to access a Unique expression as
Unique through another object x is if x itself is Unique . This is called returned
uniqueness rewriting.

Mutation summaries of methods that take input variables of the Maintain kind are
different for each call site, depending on the input variables. If a method has an input
variable x of type C and an associated mutation x.r for a resource r, then the mutation
is reported as any(C).r when the variable passed in is Normal or Maintain , and simply
as x.r when the variable passed in is Unique or Fresh . This conversion is performed
at the call site when the caller’s method body is checked.

57

CHAPTER 3. LANGUAGE REFERENCE

3.6.1 Example
The following example shows basic permitted and forbidden use of uniqueness kinds.

1 class C {
2 Object field;
3 void start(Object u, Object m, Object n)
4 u: unique; m: maintain. {
5 toUnique(u);
6 toMaintain(u);
7 toNormal(u); //Forbidden
8
9 toUnique(m); //Forbidden

10 toMaintain(m);
11 toNormal(m); //Forbidden
12
13 toUnique(n); //Forbidden
14 toMaintain(n);
15 toNormal(n);
16 }
17
18 Object makeFresh() result: unique. {
19 Object f = new C();
20 return f; //Fresh becomes unique
21 }
22 void toUnique(Object u) u: unique. {
23 this.field = u; //Forbidden
24 }
25 void toMaintain(Object m) m: maintain. {
26 this.field = u; //Forbidden
27 }
28 void toNormal(Object n) {
29 this.field = n;
30 }
31 }

3.6.2 Example 2
Suppose that the socket class from earlier in this chapter is augmented as follows.

1 class Socket {
2 tags(byte[]) received;
3
4 resource state {
5 properties @raw, @bound, @open;
6 SocketAddress boundTo;
7
8 Socket() this: ++@raw. { ... }
9 void bind(SocketAddress bindPoint) this: maintain, -@raw, ++@bound.

{
10 this.boundTo = bindPoint;
11 //...
12 }
13 void connect() this: maintain, -@bound, ++@open. { ... }
14 void send(byte[] data) this: maintain, @open. { ... }
15 byte[] receive() this: maintain, @open; result: ++received. { ... }
16 }
17 }

Each method now indicates, using the keyword maintain, that it does not create any
aliases of the receiver. Now consider the following client class.

58

3.7. OVERRIDING AND SUBCLASSING

1 class SocketUser {
2 void close(Socket s) mutates any(Socket).state: { s.close(); }
3 void closeUnique(Socket s) mutates s.state: s: unique. { s.close(); }
4 void closeMaintain(Socket s) mutates s.state: s: maintain. { s.close

(); }
5
6 Socket s;
7 void setSocket(Socket s) s: maintain. { this.s = s; //Forbidden }
8 void setSocket2(Socket s) { this.s = s; //OK }
9 String getAddress(Socket s) result: unique. {

10 return s.remoteHost; //Forbidden, result must be maintain
11 }
12 void sendBoth(byte[] data, Socket s1, Socket s2) s1: unique, s2:

unique. {
13 s1.send(data);
14 s2.send(data);
15 }
16 void doSendBoth(byte[] data, Socket s) s: unique. {
17 sendBoth(data, s, s); //Forbidden
18 }
19 }

The method close must report the mutation of s.state as any(Socket).state, be-
cause s is taken to be Normal . The methods closeUnique and closeMaintain need
only report a mutation of s.state. The method setSocket is trying to create an alias
of s by assigning it to a field, but this is forbidden, given that it has the kind maintain.
On the other hand, setSocket2 is allowed to perform this assignment.

The method getAddress is reporting a unique return value, but the value returned
actually cannot be unique, since it is obtained through a non-unique intermediate ref-
erence s. It must be reported as maintain.

The method sendBoth is invoking send on both of its arguments, which are de-
clared to be unique. When doSendBoth invokes this method, it is passing the argu-
ment s twice for unique arguments to the same method. This is forbidden, as it creates
the illusion of two unique references which are actually references to the same ob-
ject. All input variables that are unique and maintain must have no repetition among
themselves when a method or constructor is invoked.

3.7 Overriding and subclassing

3.7.1 Overriding of properties and resources
We previously mentioned that properties have external semantic contracts, internal se-
mantic contracts, and temporal contracts. If external contracts are overridden in un-
expected ways, this must be communicated to the user manually, as is normal. In
general, these contracts should be the same or strengthened in subclasses. The overrid-
ing of temporal contracts is constrained by our definition of valid method overriding.
Subclass methods must in general be more permissive than superclass methods with
respect to any given label transition, so the contract can only be weakened (more per-
missive) in the subclass. When viewed as a state machine, this means that it would
have more or identical transitions. Internal semantic contracts may be overridden in
subclasses by using additional state, or by using stronger predicates on the same state.
It is up to implementers to ensure that these predicates are provided and used correctly.
Resources in subclasses may also be associated with additional state. This state can
then be used to implement properties in the resource. It is not possible to remove some

59

CHAPTER 3. LANGUAGE REFERENCE

field from a superclass resource or associate it with a different resource. Subclass re-
sources may also have additional properties that were not part of the same resource
in the superclass. It is not possible to move a property to a different resource when
overriding.

Constraints on basic establishers

A common initialisation pattern for methods that establish some state in a class is what
Fähndrich et al. called sliding methods [27]: methods that first call the corresponding
superclass method, which is supposed to establish the superclass condition, and then
establish additional state for the current class frame. Such methods are virtual, so an
invocation always goes to the bottom frame at first, and then initialisation proceeds
gradually from the top frame down. This pattern is a natural fit when the condition
to be established is incrementally defined in subclasses. However, when using this
pattern, the problem of partially established conditions occur. When only some class
frames have been initialised and the method call has not yet proceeded all the way to the
bottom frame, the condition is in an intermediate degree of establishment between not
being present and being fully present. Fähndrich et al. solve this problem by reasoning
explicitly about each class frame, and declaring for each method which class frames
of some typestate it initialises. In Poplar, this problem applies to properties, but we
wish to avoid the complication of reasoning about each class frame independently. Our
approach is instead to view the property as not initialised until every class frame has
been initialised.

We enforce this constraint by imposing several constraints on basic establishers,
which are the methods that are annotated with + + @p for some property @p.

• Each basic establisher must invoke the superclass’ corresponding method as its
first statement, if it exists.

• The property @p is considered not to be established by the invocation of the
superclass’ basic establisher, so it is not available when the subclass basic estab-
lisher is executing.

• Subclasses must override all basic establisher methods from superclasses.

60

3.8. METHOD CHECKING

We now show what this restriction means in practice using an example.

1 class Base {
2 resource r {
3 properties @p;
4 int i;
5 void makeP() this: ++@p. {
6 i = 0;
7 } }
8 void useP() this:@p { ... }
9 }

10 class E1 extends Base {
11 resource r {
12 int j;
13 void makeP() this: ++@p. {
14 super.makeP(); //mandatory!
15 j = 0; //stronger def.
16 useP(); //forbidden
17 } }
18 }
19 class E2 extends Base {
20 resource r {
21 String x;
22 void makeP() this: ++@p. {
23 super.makeP(); //mandatory!
24 x = ""; //different def.
25 useP(); //forbidden
26 } }
27 }

In this example, the base class defines a property @p. The classes E1 and E2 extend
and redefine this property by adding more state to the resource r. Because makeP is
a basic establisher, it is forced to call the superclass establisher as its first statement in
the classes E1 and E2. It is forbidden to make use of @p within this basic establisher,
as we do here in E1 and E2, since there might be other superclasses that we do not yet
know about. Basic establishers are not allowed to use the property they establish.

3.7.2 Overriding of methods
For an overridden method to be valid, in general, it must have a compatible method
contract. Preconditions must be weakened or identical, and postconditions must be
strengthened or identical. Mutations must be the same or weakened. We express this
in terms of the subsumption relation ≺: if method m1 has the contract (LS1, ρ1) and
method m2 has the contract (LS2, ρ2), and m2 overrides m1, then for the overriding to
be valid, we need to have that LS2 ≺ LS1 and ρ2 ≺ ρ1. See Section 3.5.5.

In terms of labels, this has the natural meaning: methods must expect the same
labels or fewer, and they must establish the same labels or more, compared to the
method they override. In terms of mutations it is slightly more subtle: any(C).r is a
valid overriding of any(C ′).r if we have that C ≺ C ′, for instance.

3.8 Method Checking

Method checking is the process of checking that each method and constructor body is
valid with respect to its contract. This checking is modular and is carried out by in-
specting local source code and the contracts of other methods that are invoked and fields
that are accessed. In principle this has two parts: uniqueness checking, which checks

61

CHAPTER 3. LANGUAGE REFERENCE

that references and aliases are handled correctly with respect to uniquenesses, and la-
bel checking, which checks that labels and mutations are handled correctly. These two
aspects can be checked separately or together, although uniqueness information must
be present when label checking is carried out. In our implementation uniquenesses are
checked separately beforehand (see Chapter 5).

Uniqueness checking is simply checking that field and variable writes are carried
out in accordance with the rules specified in Section 3.6. In the remainder of this
section we will discuss label checking. Label checking is carried out by computing the
expression and statement contract for each expression and statement (see Section 3.5.
With the exception of the if-statement, the expressions are combined together in the
order that they are executed, by using the chaining operation (Section 3.5.2). For if-
statements, the alternation operation is used instead. In this way, an overall contract for
the method body is obtained. In principle, the method body is a single statement, since
in our formalisation, a sequence of statements is also a statement. When this single
contract has been obtained, it is checked against the prior and posterior expanded
signatures of the method to verify that labels are handled correctly.

3.8.1 Method body checking

Method and constructor bodies are checked to verify that they are Poplar type safe.
Poplar type safety is intended to guarantee that each time a value is assumed to have
some set of labels, it has at least those labels. That is, we wish to guarantee that those
labels have been established at some point before being used, and they have not been
destroyed between the point of establishment and the point of use. By extension, this
guarantees that the internal semantic contract (predicate) of each property is upheld,
that temporal contracts (protocol rules) are not being violated, and that external seman-
tic contracts are being upheld. This final point also relies on the meaning of external
semantic contracts being communicated properly from developers to users, something
that we cannot check mechanically.

A method body is said to be valid if there is at least one label assignment that is
provided at the start at the method and that leads to all label uses throughout the method
body being satisfied in the manner described above, and that also leads to the method
satisfying its postcondition with no resource mutations beyond what has been reported.

Poplar must track values as they flow between variables, fields and methods. There
are several ways that a value (primitive or object) can be copied or renamed: through
a method or constructor invocation (as a receiver or parameter), as a return value, and
through a field write or a variable write. When we check an expression that performs
such a renaming or overwriting, we first compute the contract of the inner expression
(which is being assigned to something), and then rewrite this contract so that the rel-
evant labels and mutations are re-bound to the expression’s new name. Information
about the labels that were previously associated with the left hand side of a write, if
any, is lost, just as the previous value of a variable is lost when it is overwritten.

62

3.9. QUERIES AND QUERY SOLVING

Method invocation

Constructor definition, method definition
cnd ::= C (Ca xa)[ρ :][ls]{super(ea); s1 . . . sn}
md ::= τ m(Ca xa)[ρ :][ls]{s1 . . . sk}

Promotable expression
pe ::= e.m(ea) | new C(ea) Method invocation, object creation

When a method invocation is checked, the associated method type is looked up. The
method type describes a prototypical contract of the method (label signature and muta-
tion summary). The concrete receiver and parameters are substituted into this contract
to obtain the resulting contract of the invocation. Uniqueness checking (Section 3.6) is
also performed.

Acceptable mutations

Throughout the checking of a method body, the states of local fields and variables
only are being tracked. Fields in other objects are not being tracked, for instance.
We only permit mutations where we can track the effects. For example, statements
are not permitted to mutate fields in other objects, or return values from methods that
have been invoked (unless they are Fresh , which means that the caller may take over
control of them), since these cannot be tracked. Permitting these mutations might
lead to object configurations becoming inconsistent. We call this limitation acceptable
mutation checking.

If-statements

For branches such as if-statements, we cannot know statically which branch will be
taken. Thus, we conservatively compute the effects of executing either one of these
statements. For example, we consider the union of mutation summaries, but the inter-
section of added labels, the union of subtracted labels, and so on. The precision of this
analysis is clearly very low if the two branches are very different.

3.9 Queries and query solving

Statement
s ::= ;

| x = #produce(C,U, l1, . . . ln); Produce query
| #transform(x, l1, . . . ln); Transform query

Queries have two forms: the produce-query and the transform-query. Both are
treated as statements, so it is not possible to assign a query to a variable, for instance.
The assignment in x = #produce... is part of the query itself.

The produce-query is requesting a variable of a given type, with (possibly) a given
uniqueness, and with a given set of labels. The resulting variable may be a new object,
or it may be an existing value that was obtained from something that happened to be
available in the query context. There is no way to force the production of a new object.

63

CHAPTER 3. LANGUAGE REFERENCE

The transform-query is requesting that additional labels should be associated with
an existing variable.

Solutions to queries are sequences of statements that are found by the compiler
at compile time. These solutions are substituted for the queries. Each statement in
a solution is either a field access, a method invocation, or a constructor invocation.
Notably, no branches or loops are generated. Consider a poplar methodm, with method
bodymb that contains queries q1, . . . qn, and suppose that solutions s1, . . . sn have been
found. These solutions are valid with respect to the methodm if and only if the method
body remains valid with respect to its contract when the solutions have been inserted
in place of the queries. (Section 3.8).

When method body checking is carried out, queries are assumed to already have
minimal solutions that satisfy them. That is, it is assumed that they do what they
request. When a concrete solution is substituted later it will have been found in such a
way that it does not violate the contract that was assumed when the method body was
checked.

Poplar’s semantics and formalisation are mostly independent from the precise al-
gorithm that is used to find solutions for queries. We describe how we use Partial Order
Planning to find solutions in Section 5.9.

3.10 External resources

Often it is convenient to think about an object as having a property, even though the
concrete state of that property is in a different object. For instance, it is convenient to
think of a list item as having the property of ”being in a list” even though the item itself
does not have the state that controls this - the list object does. In order to model this
situation, we introduce external resources. Properties in such resources we call external
properties. We previously described labels in terms of three contracts: the external
semantic contract, the internal semantic contract, and the temporal contract. Properties
in external contracts can be thought of as having an internal semantic contract for a
different value than the value that the other two contracts apply to.

We call the object having the internal contract the host object, and the object having
the other two contracts the hosted object. These two may be of the same type, or
they may be of different types. This allows us to models constructs such as lists and
containers. An example is given in Figure 3.1. The class Cell is the host class, and
the class Item is the hosted class. An Item object can obtain the property @inCell by
being inserted into the cell using set(Item).

There is a fundamental source of inaccuracy in external resources. Consider the ex-
ample in Figure 3.1. The class Cell provides a property @inCell for the external class
Item. When we write to fields of the resource, they are identified as raw(ext(Item)) by
our analysis. But there is no way to identify the precise external variable of type Item
that this mutation ”belongs” to, and we leave it to the programmer to identify explicitly,
in the mutation summary, which variable (or possibly any(Item)) has had an external
resource mutated. This is because there is not necessarily an obvious way to link such
a mutation to an operation involving a specific reference, unlike for normal resources,
where the mutation is always on the this object. Thus, in this example, remove and
remove2 have different, but valid, mutation summaries, even though they contain the
same code.

It should be noted that even though we cannot identify the object that has its ex-
ternal resource mutated, we can insist that the programmer identifies some object (re-

64

3.11. CONCLUDING REMARKS

1 class Cell {
2 resource[Item] data {
3 properties @inCell;
4 Item i;
5 }
6 void set(Item in) mutates any(Item).ext(Cell).data:
7 in: ++@inCell. {
8 i = in;
9 }

10 void remove(Item out) mutates out.ext(Cell).data: {
11 if (i == out) {
12 i = null; //identified here as raw(ext(Item))
13 }
14 }
15 void remove2(Item out) mutates any(Item).ext(Cell).data: {
16 if (i == out) {
17 i = null; //identified here as raw(ext(Item))
18 }
19 }
20 }

Figure 3.1: Identifying mutations of external resources

source subject in our terminology above). The mutation cannot pass completely unno-
ticed. Future extensions, such as ownership systems, may lead to a way of increasing
our precision here.

We specify external resources formally in an extension of Poplar0, which we call
Poplar1. This is described in Section 4.3.

3.11 Concluding remarks

This chapter has discussed the semantics of Poplar informally and by example. The fol-
lowing chapter will formalise the intuition given here and define precisely how Poplar
checking is performed.

65

4
Formalising Poplar

So far we have informally shown the concepts that make up the Poplar Java language
extension. However, without precise definitions there can be no possibility of imple-
menting or fully understanding the subtleties of a programming language. In this chap-
ter we formalise Poplar in detail. The semantics of Poplar are described informally in
Chapter 3. It is recommended to read this description, at least in part, before reading
the present chapter.

Often, a full specification of a statically typed programming language involves the
following items.

Syntax. The syntax defines all the possible syntactic forms of the language.

Typing judgments. Syntactic forms are often built as composites of other syntactic
forms; for instance, in MJ, a field write x.f = e relates the variable x, the field f
and the expression e to each other. Typing judgments define, for each syntactic
form, what relationships the types of the subexpressions must have to each other
in order for the overall expression to be well-typed.

Type safety proof. A type safety proof shows, usually by induction, that during the
course of its evaluation, a well-typed program cannot in some way go wrong.
The two parts of a classical type safety proof are the progress lemma and the
preservation lemma, where the former shows that a well-typed term can always
be rewritten into another term, and the latter shows that during such evaluation,
which rewrites terms into new forms, type safety is preserved in the new form.
One consequence of a type safety proof is that a well typed program should
have no unexpected consequences at run time, for instance by ending up in a
state where evaluation has not finished but there is no evaluation rule that may
be applied. More generally, a type safety proof guarantees that the constraints
placed by the type system on the various terms will always be upheld.

Formal semantics. The semantics of a language define its evaluation rules in some
way. One may further distinguish between static and dynamic semantics. Clas-
sical approaches to the specification of static semantics include denotational se-
mantics, in which terms are defined in terms of mappings to mathematical enti-
ties, operational semantics, in which terms are specified in terms of operations
on an underlying abstract machine, and axiomatic semantics, in which the lan-
guage is primarily specified as axioms and the meaning of each term is what can
be proven about it. [94, p. 33]. Instead of a formal semantics, we describe our
semantics informally in Chapter 3.

67

CHAPTER 4. FORMALISING POPLAR

We cannot introduce the theory of type systems and operational semantics in detail
here; for an introduction to the study of statically typed programming languages we
recommend Pierce’s book [94].

In formalising a new Java extension, it is naturally to build on one of several core
calculi that exist, since the full Java type system is somewhat unwieldly. Several well-
studied such calculi exist.

Featherweight Java (FJ). FJ [53] is a truly minimal core calculus that omits a large
amount of the standard Java features. It has no primitive types, no interfaces, no
static classes or members and no exceptions. It also does not have any mutable
state, making it a functional fragment of Java. Nevertheless it is Turing com-
plete, and any valid FJ program is also a valid Java program, since the syntax is
compatible. FJ has been very influential, and many studies of Java extensions are
directly based on FJ, for instance alias annotations [2], ownership and immutabil-
ity coupled with generics [134] and prototype-based component evolution [128]
and others, such as [15], are inspired by FJ’s design.

Middleweight Java (MJ). Like FJ, MJ [18] lacks primitive types, interfaces, static
classes and members and exceptions. However, it does have mutable state, per-
mitting variables to be re-assigned after initialisation. MJ also models the scope
structure of Java faithfully. These changes make the calculus larger than FJ,
but it is a good choice for our work, since we are interested in reasoning about
state changes, which would be impossible in FJ. MJ has the additional advantage
that a fragment of the Boyland-Greenhouse effect system [46], which Poplar
is inspired by, was formalised in MJ and proved correct by the MJ authors [18].
This, and the fact that MJ has the concept of object identity (which FJ lacks) may
make a similar correctness proof for Poplar simpler to carry out in the future.

Classic Java. Classic Java [33] also models mutable state, but it is not a valid subset
of Java, and it was primarily designed with the intent of modelling mixins.

We use MJ as a basis for our formalism. We will proceed by introducing it and
describing its essential features. Next, we formalise a core of Poplar, called Poplar0,
in Section 4.2. Finally, we formalise a larger version, called Poplar1, in Section 4.3.

In this chapter, we provide the syntax and typing judgments for Poplar0 and Poplar1.
By specifying the Poplar typing judgments, we will be formalising the notion of a valid,
well-typed Poplar code fragment; our integration mechanism functions by searching
for such well-typed Poplar code fragments. We do not provide any special semantics
for Poplar. The reason is that the additional Poplar concepts serve as a compile time aid
only; they have no purpose at runtime and therefore need no runtime semantics. When
a Poplar program is compiled to a MJ program, all syntactic forms that are unique to
Poplar are removed and only MJ forms remain. Thus, Poplar has the same operational
semantics as MJ. When it is necessary, in order to shed light on some subtleties of our
design, we will discuss selected parts of MJ semantics explicitly.

Although it is desirable to provide a type safety proof, due to time constraints,
such a proof is not included in this work. However, we will present a lemma, which
we believe will be useful in proving Poplar’s type safety. We will see that those Poplar
judgments that correspond to MJ judgments have either been strengthened, in the sense
that more conditions must be satisfied for the judgment to be used, or unchanged. This
means that a well-typed Poplar fragment is at least a well-typed MJ fragment when it
has been compiled to MJ.

68

4.1. MIDDLEWEIGHT JAVA (MJ)

4.1 Middleweight Java (MJ)

We introduce the fundamentals of MJ briefly in this section in order to make the
Poplar0 and Poplar1 specifications more accessible. For the full details of MJ, the
reader should consult the MJ technical report [18].

In MJ, class types are denoted by C. Statement types, which include class types
but also void, are denoted by τ .

MJ programs are typed with respect to a class table, denoted by ∆. The class table
is in itself divided into a triplet of field, constructor and method tables:

∆
def
= (∆f ,∆c,∆m)

These three are constructed directly from the syntax using well defined mappings.
We retain this notation in our formalisation, but we extend the field, constructor and
method tables with more information.

4.1.1 Judgment forms
MJ typing judgments have the form ∆; Γ ` e : C and ∆; Γ ` s : τ for expressions and
statements, respectively. We use the extended judgment forms

∆; Γ ` e : C : U : l : LS!ρ

and
∆; Γ ` s : τ : LS!ρ

respectively. These forms will be introduced below.
MJ statements are denoted by s, expressions by e, and variables by x. We have

kept these metavariables; see the syntax section below.

Subclassing relation
In our system, the subclassing relation has been unchanged from MJ. These judgments
are applied with respect to a well formed program p (to be defined).

TR-IMMEDIATE
class C1 extends C2{. . . } ∈ p

C1 ≺1 C2

TR-TRANSITIVE
C1 ≺ C2 C2 ≺ C3

C1 ≺ C3

TR-EXTENDS
C1 ≺1 C2

C1 ≺ C2

TR-REFLEXIVE

C ≺ C

4.2 Poplar0 : A Minimal Poplar

Poplar0 is the initial version of Poplar that we will formalise. Its main difference from
its larger sibling, Poplar1, is that it lacks external resources and composite properties.

We begin by formalising the fundamental concepts of Poplar in Section 4.2.1. We
then give the syntax in Section 4.2.2. Several mappings are needed to translate from
the syntax to the concepts used by our typing judgments; we give these gradually as
needed.

69

CHAPTER 4. FORMALISING POPLAR

MJ terms can be broadly divided into three categories: expressions, promotable
expressions and statements. Statements are the basic building blocks of method bodies,
which are lists of statements separated by semicolons. They implicitly have the void
type: they do not evaluate to any value, but they may have side effects. Expressions, on
the other hand, do evaluate to some value. Promotable expressions are expressions that
may also be used as statements if they are followed by a semicolon. This is a feature
that Java inherited from C-like languages. For instance, supposed that the variable x
has type C and that the method C.m returns type D. Then the expression x.m() has type
D, but if it is used as a statement, using the syntax x.m();, then the result is discarded.

We follow the MJ specification [18] in presenting Poplar typing judgments for
terms one category at a time. Expression judgments are presented in Section 4.2.7,
promotable expression judgments in Section 4.2.8, and statement judgments are pre-
sented in Section 4.2.9. Poplar queries behave like statements in many ways, but we
nevertheless present their corresponding judgments separately in Section 4.2.11.

We use a horizontal line, as in x, to denote (if syntax) a repetition such as x1, . . . xn.
If the context is not syntax, we will treat x as a set whose members are of the form xi.

We have simplified Poplar0 and Poplar1 further by assuming that each method or
constructor has exactly one argument. It is straightforward to generalise the systems
presented here to n-argument methods.

4.2.1 Label signatures and chaining

Labels, properties and resources

We denote labels by l and resources by r. For a given label, res(l) gives the resource
that it is sensitive to, so that it would be erased if that resource was mutated. Variables
are denoted by x. ρ is a mutation summary, a set of mutated resources. ρ is a set whose
members have the form x.r, raw(r) or any(C).r, where C is a type. We write ρ(x) to
denote {r | x.r ∈ ρ}.

For a resource, sens(C)(r) gives the set of sensitive labels that would be lost if it
was mutated. We also write

sens(Γ, ρ)
def
= {x.l | x.res(l) ∈ ρ ∨ (Γ ` x : C ∧ C ≺ C ′ ∧ any(C ′).res(l) ∈ ρ}

sens(Γ, ρ, x.l)
def
= sens(Γ, ρ) ∩ {x.l}.

The inverse function rem(Γ, ρ, l) gives the set of remaining labels after all the

resources have been mutated: rem(Γ, ρ, x.l)
def
= {xi.li | xi.li /∈ sens(Γ, ρ, x.l)}.

Labels that may be erased are called properties, and those that are not associated
with any resource are called tags. A resource declaration in class C of the form

1 resource r { properties @a, @b, @c; }

induces the following res and sens mappings: res(C)(@a) = {r}, res(C)(@b) =
{r}, res(C)(@c) = {r}, sens(C)(r) = {@a,@b,@c}.

In Poplar0, for simplicity, we assume that resource and label names are globally
unique.

Label signatures and chaining

LS is a label signature, written as (LS def
= (LS+,LS=,LS−)). Each of LS+,LS=,LS−

is a map that maps variables to sets of labels. However, when convenient we will also

70

4.2. POPLAR0 : A MINIMAL POPLAR

treat them as sets and use operations such as ∪ and ∩. Members of these sets have the
form x : l, where x is a variable, and l is a label. When using them as maps, we write,
for example, LS+(x) to denote {l|(x : l) ∈ LS+}. We will write LS(x) to denote
(LS+(x),LS=(x),LS−(x)). We will write LS[x 7→ y] to denote the operation of
renaming x to y, i.e.

LS[x 7→ y]
def
= (LS+\{(x : l)},LS=\{(x : l)},LS−\{(x : l)})∪({y : LS+(x)}, {y : LS=(x)}, {y : LS−(x)})

Label signatures and mutation summaries describe fragments, which are sequences
of statements. In a label signature, LS+ describes labels added by a fragment, LS=

describes labels that are invariant for the fragment (both pre- and postconditions, and
not lost temporarily), and LS− describes preconditions that will be lost due to the frag-
ment. We write precond(LS) to indicate LS= ∪ LS− and postcond(LS) to indicate
LS= ∪ LS+.

Chaining, or sequential composition, is one of the central operations on label signa-
tures. The (LS1, ρ1)⊕(LS2, ρ2) operation chains label signatures, for the case where a
fragment described by (LS1, ρ1) is evaluted immediately before a fragment described
by (LS2, ρ2). Note that chaining of label signatures is defined with respect to cor-
responding mutation summaries and also produces a tuple of a label signature and a
mutation summary. First we will define a binary predicate (LS1, ρ1) ⊕ (LS2, ρ2) ok
which indicates whether it is valid to chain the two signatures or not.

Γ ` (LS1, ρ1)⊕(LS2, ρ2) ok ⇐⇒ ∀l ∈ (LS=
2 ∪LS−2).l ∈ (LS=

1 ∪LS+
1)∨l /∈ (sens(Γ, ρ1)∪LS−1)

This predicate ensures that for each fragment, its preconditions are either immedi-
ately satisfied by the preceding fragment that we wish to adjoin, or its preconditions are
not erased by the preceding fragment (and may then be satisfied by some other, even
earlier fragment).

Given that (LS1, ρ1)⊕ (LS2, ρ2) ok, we define (LS1, ρ1)⊕ (LS2, ρ2) as

Γ ` (LS1, ρ1)⊕ (LS2, ρ2)
def
= ((LS+, LS=, LS−), ρ) where

LS+
def
=(rem(Γ, ρ2, LS+

1) ∪ LS+
2)) \(LS−2 ∪ LS=

1 ∪ LS−1)

its
def
=sens(Γ, ρ1, LS=

2 \ LS=
1) ∪ sens(Γ, ρ2, LS=

1 \ LS=
2)

LS=
def
=(LS=

1 ∪ LS=
2) \ its \(LS+

1 ∪ LS−2)

LS−
def
=(LS−2 ∪ LS−1 ∪ its) \LS+

1

ρ
def
=ρ1 ∪ ρ2

The intuition behind this operation is as follows. For LS+ we want to capture added
labels that remain ”added”, for LS= invariant labels that remain invariant, and for LS−
any subtracted preconditions. For LS+, what are the new labels that will be added if the
second fragment is executed before the first? The labels added by the first fragment will
only remain ”added” if they are not lost to the mutations in the second fragment. The
rem function computes this set. The labels added by the second fragment will clearly

71

CHAPTER 4. FORMALISING POPLAR

remain added since we are not executing anything after this addition, that we know of.
So we take the union of these two sets, but we must also remove the subtractions of the
second fragment and the invariants of the first, since it’s possible for the same label to
be in, for instance, the invariants of the first fragment and the additions of the second. In
this case it has clearly not been added, being required to exist before the first fragment
executes. Hence the subtraction of sets at the end of the LS+ expression. LS= and LS−
follow a similar pattern. its tracks those labels that have transitioned from invariants to
subtractions. The sens function in the its definition computes those labels that would
have been invariants from the first fragment, but that are lost to mutations in the second
fragment.

We say that a label signature LS is well-formed if LS+,LS− and LS= are disjoint
sets. A pair LS, ρ is well-formed if, for any e.l ∈ LS−, e.res(l) ∈ ρ. In this case, we
write ∆ ` (LS, ρ) ok.

Lemma 1 (Well-formed chaining). Suppose that LS1 is well-formed and LS2 is well-
formed. If Γ ` (LS1, ρ1) ⊕ (LS2, ρ2) ok and Γ ` (LS1, ρ1) ⊕ (LS2, ρ2) = (LS, ρ),
then LS is well-formed.

Proof. We prove this by case analysis of the origin of any non-empty intersection of
the three sets.

First, assume that LS= ∩ LS+ 6= ∅. Then, from definitions, either LS=
1 ∩ LS+

2 6= ∅
or LS+

1 ∩ LS=
2 6= ∅. But LS=

1 is excluded from LS+, and LS+
1 is excluded from LS=,

so none of these sets can be in LS= ∩ LS+. Hence, LS+ ∩ LS= = ∅.
Second, assume that LS= ∩ LS− 6= ∅. The intersection cannot come from LS−2

since this is excluded from LS=. So it must come from LS−1 ∩ LS=
2 . But if Γ `

(LS1, ρ1)⊕ (LS2, ρ2) ok, then LS=
2 ∩ LS−1 = ∅. Thus, LS= ∩ LS− = ∅.

Third, assume that LS− ∩ LS+ 6= ∅. LS+
1 is excluded from LS−, so this is only

possible if LS+
2 has a non-empty intersection with LS−1 or with its. LS−1 is excluded

from LS+, so the former is impossible. Any intersection LS+
2 ∩ its must come from

LS=
1 . But LS=

1 is also excluded from LS+. Therefore, LS+ ∩ LS− = ∅.

Note also that trivially, ∆ ` (LS1, ρ1) ok ∧ ∆ ` (LS2, ρ2) ok =⇒ ∆ `
(LS1, ρ1)⊕ (LS2, ρ2) ok.

Remark. Our definition of well-formedness insists that each label is either an
addition, an invariant, or a subtraction, and never, for a given variable, a member of
more than one of the three sets in a label signature. This is not the only conceivable
notion of well-formedness. Consider the following class.

1 class C {
2 resource r {
3 properties @a;
4 }
5 void m() this: @a. { ... }
6 void n() mutates this.r: { ... }
7 void o() this: +@a. { ... }
8 void sequence() mutates this.r: this: -@a. {
9 m(); n(); o();

10 }
11 }

The sequence m(); n(); o(); needs @a as an initial precondition for m. The property
is lost by n but re-established by o. Our formalisation considers the overall effect of
the method sequence to be a subtraction of @a even though it is re-established in

72

4.2. POPLAR0 : A MINIMAL POPLAR

the end.. An alternative way of reasoning about it would be to permit a non-empty
intersection between the addition and subtraction sets of label signatures. Then one
could express that a label is lost and re-established. We leave an investigation of this
alternative design for future work.

In addition to chaining of label signatures, we will need disjunctive composition
for the case where either one of two fragments might execute. We use this to type if ...
else -statements.

(LS1, ρ1)⊗ (LS2, ρ2)
def
= ((LS+

1 ∩ LS+
2 ,

(LS=
1 ∪ LS=

2) \ (its ∪ LS+
1 ∪ LS+

2),

(LS−1 ∪ LS−2 ∪ its) \ (LS+
1 ∪ LS+

2))

Where its def
= sens(Γ, ρ1,LS=

2 \ LS=
1)∪ sens(Γ, ρ2,LS=

1 \ LS=
2) (same as previ-

ously).

4.2.2 Syntax and symbols

We now repeat the syntax of Poplar0. In this syntax, horizontal lines indicate comma-
separated repetition. For instance, x would be a shorthand for x1, ... xn.

In addition, the following metavariables and symbols are used.

Symbol Expanded form
Method type µ (U)C : U → U : LS : ρ
Constructor type C : U : LS : ρ

Field type C : U : l : r
Label signature LS (LS+,LS=,LS−)
Class table ∆ (∆c,∆m,∆f)
Constructor lookup ∆c

Method lookup ∆m

Field lookup ∆f

Typing context Γ
Method receiver rec
Argument arg
Return value ret

73

CHAPTER 4. FORMALISING POPLAR

Program
P ::= cd1 . . . cdn : s

Class definition
cd ::= class C extends C

{fd1 . . . fdk cnd rd1 . . . rdj
md1 . . .mdn}

Field definition
fd ::= C f [: ([@p1, . . . @pn →] l1, . . . lk)];

Resource definition
rd ::= resource r{properties @p1, . . .@pn;

fd1 . . . fdk}
Constructor definition, method definition
cnd ::= C (Ca xa)[ρ :][ls]{super(ea); s1 . . . sn}
md ::= τ m(Ca xa)[ρ :][ls]{s1 . . . sk}

Mutation summary, qualified resource
ρ ::= mutates qr1, . . . qrn
qr ::= r | any(C).r | x.r

Label signature, label condition, label
ls ::= x : lc1, . . . lcn;
lc ::= + + @p | +l | l | −@p | U
l ::= t | @p Tag, property

Uniqueness
U ::= fresh | unique | maintain

Return type
τ ::= C | void

Expression
e ::= x | null | e.f Variable, null, field access

| (C)e Cast
| pe Promotable expression

Promotable expression
pe ::= e.m(ea) | new C(ea) Method invocation, object creation

Statement
s ::= ; No-op

| pe; Promoted expression
| if (e == e){s1 . . . sk} else
{sk+1 . . . sn} Conditional

| e.f = e; Field assignment
| C x[: U] Local variable declaration
| x = e; Variable assignment
| return e; Return
| {s1 . . . sn} Block
| x = #produce(C,U, l1, . . . ln); Produce query
| #transform(x, l1, . . . ln); Transform query
| drop l1, . . . ln; Drop labels

74

4.2. POPLAR0 : A MINIMAL POPLAR

4.2.3 Uniqueness kinds
We introduced uniqueness kinds in Section 2.4.8. The kinds supported by Poplar0are
Unique , Maintain , Fresh and normal. We enforce the semantics of these kinds
fundamentally by tracking assignments. For example, assignment of unique references
to any variable or field is forbidden.

We use the metavariable U to denote uniqueness kinds. The relation U ; U ′ to
indicates that a value of kind U may flow to the kind U ′. It is defined as follows.

U ; U Normal ; Maintain Unique ; Maintain Fresh ; U

If a value has been passed in as an argument to a method or constructor, we will tag
its uniqueness kind, writing Uarg, enabling us to track its origin as an argument later.
This is to prevent methods from returning a unique argument as a unique return value,
for instance, which would appear to the caller as two unique values when they actually
are aliases for each other.

4.2.4 Method, constructor and field typing
Over this and the next few sections we give the typing judgments for Poplar0. We
write C ≺ C ′ to indicate subtyping and C ≺1 C

′ to indicate immediate subtyping. We
denote method, constructor and field types by ∆m,∆c and ∆f . However, ours contain
more information than those of MJ.

Method types

Method types are defined with respect to the md syntactic form (method definition).
The lookup function ∆m(C)(m) gives the type of method m in class C.

∆m(C)(m)
def
=

(Urec)Ca : Ua → τ : Uret : rewrite(LS, ρ) where mdi = τ m(Ca xa)ρ LS{. . .}
and Ua = uniq(LS=(arg1)), Uret = uniq(LS=(ret)),
Urec = uniq(LS=(rec))

∆m(C′)(m) where m /∈ md1 . . .mdn

where classC extendsC ′{. . .md1 . . .mdn} ∈ p

and uniq(l)
def
= U ifU ∈ l,Normal otherwise

and rewrite(LS, ρ)
def
= (LS++ ∪ LS+, LS=, LS−)!(ρ ∪

⋃
r∈res(LS++)

raw(r))

The LS belonging to the method type is extracted directly from the syntax. Labels
of the forms + + l,+l, l,−l are used to form the LS++,LS+,LS= and LS− sets,
respectively. However, we use the rewrite operation to merge LS++ and LS+ imme-
diately when we compute method types. We will write direct(LS) to identify these

labels later. In other words, direct(LS′) def
= LS++ if (LS′, ρ′) = rewrite(LS, ρ). The

main purpose of tracking such “direct” access is to disallow direct writes to fields in
resources, except for when it is needed to directly establish a property.

75

CHAPTER 4. FORMALISING POPLAR

A method or constructor declaration is only well-formed if LS++ ∩LS+ = ∅ prior
to the rewrite. In addition, the intersections of LS+,LS= and LS− must be empty, as
usual. LS(x) is only well formed if it has at most one member of the form U .

Constructor types

Constructor types are similar to method types. Their corresponding lookup function is
∆c.

∆c(C)
def
= Ca : Ua : rewrite(LS, ρ) where class C extends C ′{. . . cnd . . .}

and cnd = C(Ca xa) ρ LS{. . .} andUa = uniq(LS(arg1))

A constructor declaration is only well-formed if precond(LS(ret)) = ∅.

Field types

In Poplar0, ∆f (f)(l) denotes the specific type of the field, including its guaranteed
labels, while the owning object has the labels l. The general type of a field is a function,
∆f (f) : L→ C × U × L? × R, where L is the set of all labels and R is the set of all
resources.

∆f (C)(f)(l)
def
=

C′′ : Normal : ∅ : fr(C)(fdi) where fdi = C′′ f, for some i, 1 ≤ i ≤ k and∆f (C′)(f) ↑
C′′ : Unique : l

′
: fr(C)(fdi) where fdi = C′′ f : (l1 → l

f
1 . . . ln → l

f
n), and l

′
=

⋃
lj⊆l l

f
j ,

for some i, 1 ≤ i ≤ k
∆f (C′)(fd) otherwise

fr(C)(fd)
def
=

{
r where class C extends C′{fd′ cnd r{fd, fd2, . . . fdn} rd2, . . . rdm md}
∅ otherwise

Example. Consider the following class.

1 class C {
2 resource r {
3 properties @a, @b, @c;
4 C f:(@a->@b, @b->c);
5 }
6 D m(C x) this: @b, -@c; x: unique, ++@a. {
7 //...
8 }
9 }

The method type of D.m is as follows:

(Normal)C : Unique → D : Normal + ({x : @a}, {this : @b}, {this : @c})!{raw(this.r)}

The field C.f will have the type:

C : Unique : {@b,@c} : r

76

4.2. POPLAR0 : A MINIMAL POPLAR

if the owning object has at least properties {@a,@b}. If the owning object only has the
property @a, for instance, then the field f is considered to have type

C : Unique : {@b} : r.

4.2.5 Subsumption of label signatures, resources and mutation sum-
maries

We define orderings on label signatures (LS), resources (r) and mutation summaries
(ρ). The intuition behind this subsumption is, generally, that LS ≺ LS′ if LS can take
the place of (override) LS′ in a subclass in a sound manner, ρ ≺ ρ′ if ρ can take the
place of ρ′ in a subclass in a sound manner, and r ≺ r′ if r is a more specific (smaller)
resource than r′.

LS ≺ LS (LS+ ∪ l, LS=, LS−) ≺ (LS+, LS=, LS−)

(LS+, LS=, LS−) ≺ (LS+, LS=, LS− ∪ l) r ≺ r

∆; Γ ` r ≺ r′ ∆; Γ ` C ≺ C′

∆; Γ ` any(C).r ≺ any(C′).r′
∆; Γ ` r ≺ r′

∆; Γ ` x.r ≺ x.r′

∆; Γ ` r ≺ r′ ∆; Γ ` x : C′ ∆; Γ ` C′ ≺ C
∆; Γ ` x.r ≺ any(C).r

∆; Γ ` ρ ≺ ρ

∆; Γ ` ρ ≺ ρ′

∆; Γ ` ρ ≺ ρ′ ∪ {r}
∆; Γ ` ρ ≺ ρ′ ∆; Γ ` r ≺ r′

∆; Γ ` ρ ∪ {r} ≺ ρ′ ∪ {r′}

∆; Γ ` ρ ≺ ρ′ ∆; Γ ` LS ≺ LS′

∆; Γ ` (LS, ρ) ≺ (LS′, ρ′)

Note that given these rules, ρ ≺ ρ′ if and only if any elements of the form raw(r)
are the same in both ρ and ρ′. raw(r) corresponds to the ability to write a resource’s
concrete data directly and is inserted in method types where the syntax contains a direct
addition (++) for some property in that resource.

4.2.6 Well-formed class definitions, part 1
In this section we give the judgments that identify well-formed definitions and well-
formed overriding.

There is a subtlety with direct additions of properties. When a subclass redefines
the concrete meaning of a property, it is possible for a class to be in an intermediate
state where a superclass invariant has been established but the subclass invariant has
not. Deline and Fähndrich solved this problem by using frame typestates [27], which
encode a separate typestate for each class frame, instead of having a single typestate
for the entire class. Here we wish to avoid this complication, so instead we insist
that each property should be established in all class frames atomically. We enforce
this by requiring that all direct addition methods are overridden by their subclasses,
by requiring that methods have at least the direct additions of the methods that they
override, by requiring direct addition methods to call their corresponding superclass
method, and by not considering a property to be established until the bottom frame
has been reached. In this way direct addition methods come to resemble constructors.

77

CHAPTER 4. FORMALISING POPLAR

We leave a more elegant solution (possibly including frame properties as a natural
equivalent of frame typestates) for future work.

T-CTYPE
C ∈ dom(∆)

∆ ` C ok

T-VTYPE

∆ ` void ok

T-PROPOK
res(C)(@p) ⊆ res(C′)(@p)

C ≺1 C
′

∆ ` @p ok

T-MTYPE
∆ ` Ca ok ∆ ` τ ok ∆ ` (LS, ρ) ok

precond(LS)(ret) = ∅ (postcond(LS)(ret) = ∅ ∨ τ 6= void)
Urec 6= Fresh Ua 6= Fresh Uret 6= Fresh

∆ ` (Urec)Ca : Ua → τ : Uret : LS!ρ ok

T-CONSOK
∆ ` Ca ok precond(LS)(rec) = ∅

∆c(C) = Ca : Ua : LS!ρ

∆ ` ∆c(C) ok

T-FIELDOK1
C ≺1 C

′ ∆ ` Cf ok l
′
f ⊆ lf

fr(C)(f) ⊆ fr(C′)(f)

∆f (C)(f) = Cf : Uf : lf
∆f (C′)(f) = C′f : Uf : l

′
f

∆ ` C.f ok

T-FIELDOK2
∆ ` Cf ok C ≺1 C

′

∆f (C)(f) = Cf : Uf : lf f /∈ dom(∆f)(C′)

∆ ` C.f ok

T-FIELDSOK
∆ ` C.f1 ok . . .∆ ` C.fn ok
dom(∆f (C)) = {f1 . . . fn}

∆ ` ∆f (C) ok

T-METHOK1
∆m(C)(m) = µ LS ≺ LS′ ρ ≺ ρ′ C ≺1 C

′

U ′a ; Ua U ′rec ; Urec Uret ; U ′ret
µ = (Urec)Ca : Ua → τ : Uret : LS!ρ

∆m(C′)(m) = (U ′rec)Ca : U ′a → τ : U ′ret : LS′!ρ′ ∆ ` µ ok
direct(LS′) ⊆ direct(LS)

∆ ` C.m ok

T-METHOK2
∆ ` µ ok m /∈ dom(∆m(C′)

∆m(C)(m) = µ C ≺1 C
′

∆ ` C.m ok

T-METHSOK
∆ ` C.m1 ok . . .∆ ` C.mn ok
dom(∆m(C)) = {m1 . . .mn}

∆ ` ∆m(C) ok

T-PROPSOK
∆ ` @p1 . . .∆ ` @pn ok

dom(res(C)) = {@p1 . . .@pn}
∆ ` res(C) ok

T-CLASSOK
∆ ` ∆f ok ∆ ` ∆m(C) ok

∆ ` ∆c(C) ok ∆ ` res(C) ok
` ∆ ok

∀C ∈ dom(∆)

For valid overriding, we require that superclasses are overridden in a way that does
not invalidate the contracts that they expose through Poplar annotations. In particu-
lar, a property defined in a certain resource in a superclass cannot be moved to new
or different resources in subclasses (however, additional properties can be introduced).
Mutations and label signatures abide by the substitution principle: overriding meth-
ods will, if they are valid, have stronger or equal postconditions and weaker or equal
preconditions.

Note that a Fresh variable cannot be written directly to a field or a variable, so the
variable this will remain Fresh until returned from a constructor.

For full well-formedness definitions, we also need to define well-formed classes
and method bodies. However, we need several preliminaries before we can do this, so
we present the remainder of the well-formedness judgments in Section 4.2.10.

78

4.2. POPLAR0 : A MINIMAL POPLAR

Acceptable mutations. The judgment ∆; Γ ` e!r ok indicates whether it is ac-
ceptable to mutate the resources r of the expression e. It is defined as follows.

∆; Γ ` e!∅ ok ∆; Γ ` x!r ok ∆; Γ ` this.f !r ok
∆; Γ ` e!r ok

∆; Γ ` (C)e!r ok

∆; Γ ` e : C : Fresh
∆; Γ ` e!r ok

Invocation substitutions are used to bind the label signatures and mutation sum-
maries of methods and constructors to concrete expressions when they are invoked.
Method types contain the placeholders ret, rec,arg to indicate return value, receiver
and argument, respectively. After binding them with invsub, we obtain method sig-
natures that correspond to the caller side view of a method invocation. Note that the
mutation summary is adjusted depending on whether the inputs may be aliased or not.

invsub(LS, ρ, er, Cr, Ur, ea, Ca, Ua)
def
=

(invsub(LS, er, ea), invsub(ρ, er, Cr, Ur, ea, Ca, Ua))

invsub(LS, er, ea)
def
= lf low(lf low(LS, rec, er), arg, ea))

invsub(ρ, er, Cr, Ur, ea, Ca, Ua)
def
= rflow(rflow(ρ, rec, er, Cr, Ur), arg, ea, Ca, Ua))

cnsub(LS, ρ, ea, Ca, Ua)
def
= (rflow(ρ, arg, ea, Ca, Ua), lf low(LS, arg, ea))

lf low(LS, e, e′)
def
=

{
LS[e 7→ e′] if e = this.f or e = x

LS otherwise

rflow(ρ, e, e′, C, U)
def
=

ρ[e 7→ any(C)] if U = Maintain or U = Normal
ρ[e 7→ this.f] if e = this.f and U /∈ {Maintain ,Normal }
ρ[e 7→ x] if e = x and U /∈ {Maintain ,Normal }
ρ otherwise

4.2.7 Typing judgments for expressions

Generally, typing judgments take the following form: ∆; Γ ` e : C : U : l : LS!τ ,
where C is the type of the expression, U is a uniqueness kind, l is the set of labels
associated with it (at its point of declaration), LS is the label signature associated with
evaluating the expression, and τ is the mutation summary associated with evaluating
the expression. Sometimes we will abbreviate this rather long judgment for the sake of
brevity, when not all information is needed. For instance, we may write ∆; Γ ` e : U
or ∆; Γ ` e : C.

Many of the typing judgments use the chaining operation (LS1, ρ1) ⊕ (LS2, ρ2)
(see Section 4.2.1. We remind the reader that each time we make use of this operation,
we also implicitly require that (LS1, ρ1) ⊕ (LS2, ρ2) ok, since otherwise the former
operation is undefined. For the sake of brevity we do not spell this out explicitly.

79

CHAPTER 4. FORMALISING POPLAR

TE-VAR
∆ ` Γ ok ` ∆ ok

∆; Γ, x : C : U ` x : C : U : l′ : LS
where LS = {∅, {x= : l

′}, ∅} and

TE-SUBLABELS
∆; Γ ` e : C : U : l : LS!ρ

∆; Γ ` e : C : U : l
′

: LS!ρ
where l

′ ⊆ l

TE-FIELDACCESSTHIS
∆; Γ ` this : C : U : l : LS

∆; Γ ` this.f : C1 : U ′1 : l1 : LS2

where LS1 = {∅, {this.f= : l1}, ∅}

and U ′1 = uniqueReturn(U2, U1), (LS2, ρ2) = (LS, ∅)⊕ (LS1, ∅)

TE-FIELDACCESS
∆; Γ ` e : C : U : l : LS

∆f (C)(f)(l) = C1 : U1 : l1 e 6= x

∆; Γ ` e.f : C1 : U ′1 : l1 : LS
where U ′1 = uniqueReturn(U2, U1)

TE-NULL
∆ ` C ok ∆ ` Γ ok ` ∆ ok

∆; Γ ` null : C

TE-UPCAST
∆; Γ ` e : C2 C2 ≺ C1 ∆ ` C1

∆; Γ ` (C1)e : C1

TE-DOWNCAST
∆; Γ ` e : C2 C1 ≺ C2 ∆ ` C1

∆; Γ ` (C1)e : C1

TE-STUPIDCAST
∆; Γ ` e : C2 C2 6≺ C1

C1 6≺ C2 ∆ ` C1

∆; Γ ` (C1)e : C1

4.2.8 Typing judgments for promotable expressions

These judgments check method invocations and constructor invocations. The following
items must be checked:

• Are the argument and the receiver of compatible types?

• Are the uniqueness kinds of the argument and the receiver acceptable with re-
spect to the method signature?

• Are the mutations that the method’s invocation would cause acceptable?

The helper function invocationOk is used to check non-repetition of unique in-
puts. The helper function uniqueReturn is used to rewrite the uniqueness of return
values in the case of a receiver that is not definitely unique. The need for this pro-
cedure is explained in Section 3.6. cnsub and invsub are used to rewrite the method
type by substituting the concrete expressions that are passed in for placeholders such
as arg, rec and ret.

80

4.2. POPLAR0 : A MINIMAL POPLAR

TE-METHOD
∆; Γ ` e′ : C′ : U ′ : precond(LS)(rec) : LS′!ρ′ C1 ≺ Ca

∆; Γ ` e1 : C1 : U1 : precond(LS)(arg1) : LS1!ρ1
∆m(C′)(m) = (Urec)Ca : Ua → τ : Uret : LS!ρ

∆ ` e!ρ(this) ok ∆ ` e1!ρ(arg1) ok invocationOk(Γ, {e′, e1})
U ′ ; Urec U1 ; Ua U ′ret = uniqueReturn(U ′, Uret)

(LS′′, ρ′′) = (LS′, ρ′)⊕ (LS1, ρ1)⊕ invsub(LS, ρ, e′, C′, U ′, e1, C1, U1)

∆; Γ ` e′.m(e1) : τ : U ′ret : postcond(LS)(ret) : LS′′ \ direct(C′.m)!ρ′′

TE-NEW
∆; Γ ` e1 : C′1 : precond(LS)(arg1) : U ′1 : LS′!ρ′

∆c(C) = C1 : U1 : LS!ρ C′1 ≺ C1

∆ ` e1!ρ(arg1) ok invocationOk(Γ, {e1}) U ′1 ; U1

(LS′′, ρ′′) = ((LS′, ρ′)⊕ cnsub(LS, ρ, e1, C1, U1))

∆; Γ ` new C(e1) : C : postcond(LS)(ret) : Fresh : LS′′!ρ′′

invocationOk(Γ, e)
def
= ∀ei((Γ ` ei : Unique ∨ Γ ` ei : Fresh) =⇒ ei /∈

(e \ ei) ∧ Γ ` ei : Fresh =⇒ ei 6= x)

uniqueReturn(Urec, Uret)
def
=

{
Maintain if Urec ∈ {Maintain,Normal} and Uret = Unique
Uret otherwise

4.2.9 Typing judgments for statements

Typing judgments (statements). These take the form ∆; Γ ` s : τ : LS!ρ, where s is
a statement, τ is its type, and LS and ρ specify the effects of the statement.

For TS-VARWRITE and TS-FIELDWRITE we make use of a replacement operation
for label signatures: LS1�LS2

def
= LS1\{LS1(x) | x ∈ dom(LS2)}∪LS2. It is clear

that if LS1 is well-formed and LS2 is well-formed, then LS1 � LS2 is well-formed.

81

CHAPTER 4. FORMALISING POPLAR

TS-DROPTHIS
∆; Γ ` this : C : U : l1 : LS1!ρ1

l1 = l] l2 and r =
⋃

res(l)

∆; Γ ` drop l; : void : (LS1, ρ1)⊕ ({this− : l}, r)

TS-RETURN
∆; Γ ` e : C : U : l : LS!ρ

LS′ = LS� {{ret+ : l}, ∅, ∅}
U 6= Unique arg ∧ U 6= Maintain arg

∆; Γ ` return e; : C : LS′!ρ

T-CSUPER
∆; Γ′ ` e1 : C′1 : U1 : l1 : LS1!ρ1

∆c(C′) = C1 : U1 : LS′!ρ′ C′1 ≺ C1

C ≺1 C
′ Γ(this) = C,Γ = Γ′] {this : C}

(LS′′, ρ′′) = (LS1, ρ1)⊕ (LS′, ρ′)
(LS, ρ) = (lf low(LS′′, arg, e1), rflow(ρ′′, arg, e1, C′1, U1))

∆; Γ ` super(e1); : void : LS \ direct(new C’)!ρ

TS-VARWRITE
∆; Γ ` x : C : U : l : LS1 x 6= this

∆; Γ ` e : C′ : U ′ : l
′

: LS2!ρ2 C′ ≺ C
U ′ = Normal ∨ (U ′ = Fresh ∧ e 6= x′)

U ′ ; U LS = LS2 � {{x+ : l
′}, ∅, ∅}

∆; Γ ` x = e; : void : LS!ρ2

TS-PLAINFIELDWRITE
∆; Γ ` e : C1 : U1 : l1 : LS1!ρ1
∆; Γ ` e2 : C2 : U2 : l : LS2!ρ2
∆f (C1)(f)(l1) = C3 : U3 : l : ∅
(LS1, ρ1)⊕ (LS2, ρ2) = (LS, ρ)

U2 ; U3 C2 ≺ C3

Uf = Normal ∨ (U2 = Fresh ∧ e2 6= x)

∆; Γ ` e.f = e2; : void : LS!ρ

TS-RESFIELDWRITE
∆; Γ ` this : C1 : l1 : LS1!ρ1 C2 ≺ C3

∆; Γ ` e2 : C2 : Fresh : l : LS2!ρ2
∆f (C1)(f)(l1) = C3 : Unique : l : r

(LS1, ρ1)⊕ (LS2, ρ2)� ({this.f+ : l}, ∅, ∅) = (LS, ρ)
e2 6= x

∆; Γ ` this.f = e2; : void : LS!ρ ∪ {raw(this.r)}

TS-IF
∆; Γ ` s1 : void : LS1!ρ1 ∆; Γ ` s2 : void : LS2!ρ2
∆; Γ ` e1 : C′ : LS′1!ρ′1 ∆; Γ ` e2 : C;′ : LS′2!ρ′2

(LS, ρ) = ((LS′1, ρ
′
1)⊕ (LS′2, ρ

′
2))⊕ ((LS1, ρ1)⊗ (LS2, ρ2)) C′ ≺ C′′ ∨ C′′ ≺ C′

∆; Γ ` if (e1 == e2) {s1} else {s2} : void : LS!ρ

TS-BLOCK
∆; Γ ` s1 . . . sn : void : LS!ρ

∆; Γ ` {s1 . . . sn} : void : LS!ρ

TS-PE
∆; Γ ` pe : τ : l : LS!ρ

∆; Γ ` pe; : void : LS!ρ

TS-NOOP
` ∆ ok ∆ ` Γ ok

∆; Γ `; : void

T-BONE
C ≺1 Object

∆; Γ, this : C ` super() : void : ∅!∅

TS-STUPIDIF
∆; Γ ` s1 : void : LS1!ρ1 ∆; Γ ` s2 : void : LS2!ρ2
∆; Γ ` e1 : C′ : LS′1!ρ′1 ∆; Γ ` e2 : C;′ : LS′2!ρ′2

(LS, ρ) = ((LS′1, ρ
′
1)⊕ (LS′2, ρ

′
2))⊕ ((LS1, ρ1)⊗ (LS2, ρ2)) C′ 6≺ C′′ ∧ C′′ 6≺ C′

∆; Γ ` if (e1 == e2) {s1} else {s2} : void : LS!ρ

The need for the rule TS-DROPTHIS may be non-obvious. The rule allows us to
explicitly abandon properties of this and register the corresponding resource as being
mutated. This is needed in some cases when writing to fields that belong to resources,
and when the surrounding method is annotated with this:-@p for some property. Once
the property has been dropped at a specific point, constraints on what values can be

82

4.2. POPLAR0 : A MINIMAL POPLAR

written to some fields may be less restrictive. It is also used when direct addition
methods override other direct addition methods (see rule T-MBODY). Note that the
user is not expected to write drop statements manually. The checker will insert them
as required.

Statement sequences

MJ has two rules for statement sequences, TS-INTRO for sequencing where the first
statement is a local variable declaration, and TS-SEQ for all other sequences. This
approach changes the typing context appropriately to include the new variable in TS-
INTRO. We have retained this approach, adjusted it to handle our effects appropriately,
and added two new rules for sequencing of statements, TS-SEQVARWRITE for vari-
able writes and TS-SEQFIELDWRITE for field writes. Field writes and variable writes
are thus constrained twice: first in the judgments that type the write statements them-
selves, and then in the sequencing with other statements. The reason for this is that
when a write such as x = e is carried out, the expression e may already have its own
label signature and mutation summary associated with it by the type system. As the
expression is assigned to x, we must now associate the existing LS and ρ with the vari-
able x instead of with the expression e. This is done by the helper functions lf low and
rflow in these sequencing judgments. The exact same principle applies to field writes.

In these rules we also check that the mutations that will be carried out on the writ-
ten field or variable after the write (in program execution order) are acceptable, by
using the ∆; Γ ` e!ρ ok judgment.This prevents, for instance, the future mutation of a
resource of a return value from some function call. Such mutations must be prohibited
since they may place other objects in inconsistent states.

TS-SEQ
∆; Γ ` s1 : void : LS1!ρ1 s1 6= C x

s1 6= x = e ∆; Γ ` s2 . . . sn : τ : LS2!ρ2
{r | raw(r) ∈ ρ1} ∩ res(precond(LS2)) = ∅

∆; Γ ` s1s2 . . . sn : τ : (LS1, ρ1)⊕ (LS2, ρ2)

TS-SEQVARWRITE
∆; Γ ` x = e; : void : LS1!ρ1
∆; Γ ` s2 . . . sn : τ : LS2!ρ2

∆; Γ ` e!ρ2(x) ok ∆; Γ ` e : C : U
(LS1, ρ1)⊕ (lf low(LS2, x, e), rflow(ρ2, x, e, C, U)) = (LS, ρ)

∆; Γ ` x = e; s2 . . . sn : τ : LS!ρ

TS-SEQFIELDWRITE
∆; Γ ` this.f = e; : void : LS1!ρ1

∆; Γ ` s2 . . . sn : τ : LS2!ρ2
∆; Γ ` e!ρ2(this.f) ok ∆; Γ ` e : C : U

(LS1, ρ1)⊕ (lf low(LS2, this.f, e), rflow(ρ2, this.f, e, C, U)) = (LS, ρ)

∆; Γ ` x = e; s2 . . . sn : τ : LS!ρ

TS-INTRO
∆; Γ, x : C : U ` s1 . . . sn : τ : LS!ρ

∆; Γ ` C x:U; s1 . . . sn : τ : (LS \ LS(x))!(ρ \ ρ(x))

83

CHAPTER 4. FORMALISING POPLAR

4.2.10 Well-formed class definitions, part 2
Each method has a prior and a posterior expanded signature, which describes the prop-
erties of the fields in the owning class, as well as of the receiver, argument and return
value, before and after executing a method. Given a method type,

∆m(C)(m) = (LS)(Urec)Ca : Ua → τ : Uret!ρ

and given that the class C defines fields f1 . . . fn, we define

LSpre(C)(m)
def
= (precond(LS), ∅, ∅)]

⋃
i

({fi : l
pre
i }, ∅, ∅) where

∆f (C)(fi)(precond(LS)(rec)) = Ti : Ui : l
pre
i : r

LSpost(C)(m)
def
= (LS+ \ direct(LS), LS=, ∅)]

⋃
i

({fi : l
post
i }, ∅, ∅) where

∆f (C)(fi)(postcond(LS)(rec)) = Ti : Ui : l
post
i : r

A method body will only be well typed if it establishes LSpost(C)(m) given LSpre(C)(m).
The domain of non-expanded label signatures, which are given directly in the syntax,
is the receiver this, the return value ret, and arguments of the method. The domain
of expanded label signatures also includes those fields of the receiver that belong to
resources.

Note that the expanded posterior signature does not include the method’s direct ad-
dition labels: the programmer is promising that these labels will be established through
direct manipulation of state.

One acn also think about the prior and posterior signatures as being ”ghost state-
ments” that are inserted before and after the corresponding method body, with given
assumptions and guarantees. If the chaining of the method body between these ghost
statements succeeds, then the method body is valid.

Example. Consider the following class.

1 class C {
2 resource r {
3 properties @a, @b, @c, @d;
4 C f:(@a->b, @c->@d);
5 }
6
7 void m(C x) x: @a, this: -@a, +@c. {
8 //...
9 }

10 }

The method C.m will have the prior expanded signature

LSpre(C)(m) = ({{this 7→ {@a}, x 7→ {@a}, f 7→ {@b}}, ∅, ∅})

The posterior expanded signature is

LSpost(C)(m) = ({{this 7→ {@c}, x 7→ {@a}, f 7→ {@d}}, ∅, ∅})

As a rule, only mutations that can be tracked in expanded signatures are permitted. The
only exception is mutation of fresh variables, which is always permitted from the point

84

4.2. POPLAR0 : A MINIMAL POPLAR

of view of a given method, since nobody else might have a reference to them, and thus
nobody else can make assumptions about their state.

We can now give the remaining well-formedness judgments. Unlike in MJ, in
Poplar0 method bodies are well-formed only if they satisfy their contract by estab-
lishing the posterior expanded signature given the prior expanded signature. Thus,
well-formedness of Poplar0 method bodies depend on the Poplar types of their state-
ments, and by extension, well-formedness of classes also depends on this.

T-MBODY
∆m(C)(m) = (Urec)Ca : Ua → τ : Uret : LS!ρ

∆; Γ ` s′ : τ ′ : U ′ret : LS′!ρ′

τ ′ ≺ τ U ′ret ; Uret
mbody(C,m) = (x, s) C ≺1 C

′

(LSpre(C)(m), ∅)⊕ (LS′, ρ′) ≺ (LSpost(C)(m), ρ)

Γ = {this : C : U
arg
rec , x : Ca : U

arg
a }

(direct(LS) 6= ∅ ∧m ∈ dom(∆m(C′))) =⇒ s = ((C’)this).m(e); drop direct(C′)(m);sr
∆ ` altmbody(C,m, s′) ok

T-CDEFN
∆; Γ ` super(e); : void : LS1!ρ1

∆; Γ ` s : void : LS2!ρ2
cnbody(C) = (x, super(e); s)

∆c(C) = C1 : U1 : LS!ρ
Γ = {this : C : Fresh , x : C1 : Uarg

1 }
(LSpre(C)(C), ∅)⊕ (LS1, ρ1)⊕ (LS2, ρ2) ≺ (LSpost(C)(C), ρ)

∆;` C cok

T-MBODYS
∆ ` mbody(C,m1) ok . . .∆ ` mbody(C,mn) ok
dom(∆m(C)) = {m1 . . .mn} C ≺1 C

′

{m | m ∈ dom(∆m(C′)) ∧ direct(m) 6= ∅} ⊆ dom(∆m(C))

∆ ` C mok

T-MDEFN
∆ ` altmbody(C,m, s) ok
mbody(C,m) = (x, s)

∆ ` mbody(C,m) ok

T-PROGDEF
∆ ` C1 cok . . .∆ ` Cn cok

∆ ` C1 mok . . .∆ ` Cn mok
dom(∆) = {C1 . . . Cn}

∆ ` p ok

4.2.11 Queries and satisfaction of queries

In principle, queries are statements that make no assumptions about their environments’
labels, but provide the labels that they promise to establish (the solutions to queries may
make assumptions about labels, though). We also give two judgments, SAT-PRODUCE
and SAT-TRANSFORM, that are not typing judgments. Instead, they describe the con-
straints on valid solutions to queries.

85

CHAPTER 4. FORMALISING POPLAR

TS-PRODUCE
∆; Γ ` x : C′ : U ′ : l : LS′!ρ′ C′ ≺ C

∆; Γ ` x = #produce(C, l, U); : C : U : l : ∅!∅

where U ; U ′

and U 6= Unique

SAT-PRODUCE
mbody(C)(m) = (x, (s1 x = #produce(C, l, U); s2))

∆; Γ ` e′ : C′ : U ′ : l C′ ≺ C
∆ ` altmbody(C,m, s1 s;x = e; s2) ok

∆; Γ ` s;x = e satisfies #produce(C, l, U)
where U ′ ; U

TS-TRANSFORM
∆; Γ ` x : C : U : l : LS!ρ

∆; Γ ` #transform(x, l
′
); : void : ∅!∅

SAT-TRANSFORM
mbody(C)(m) = (xa, (s1 #transform(x, l) s2))

∆; Γ ` s1 s : τ : U : l
′

: LS!ρ
∆ ` altmbody(C,m, s1 s s2) ok

∆; Γ ` s satisfies #transform(x, l)
where l ⊆ postcond(LS)(x)

4.3 Poplar1 : Adding External Resources and Com-
posite Properties

Poplar1extends Poplar0by adding several features that allow us to describe usage con-
straints of realistic Java programs more practically. Most importantly, we add external
resources, which allow the concrete state of one object to describe properties of an-
other object. We also add composite properties, which allow us to conveniently refer
to a group of properties by a single name.

New and changed syntactic forms

The syntax of Poplar1 is the same as for Poplar0, except for the following changed
and newly introduced syntactic forms.

86

4.3. POPLAR1 : ADDING EXTERNAL RESOURCES AND COMPOSITE
PROPERTIES

Class definition
cd ::= class C extends C

{fd1 . . . fdj cnd cpd1 . . . cpdk
rd1 . . . rdm md1 . . .mdn}

Resource definition
rd ::= resource { rb } Resource

| resource[C] r { rb } External resource
rb ::= properties @p1, . . .@pn; fd1 . . . fdl Resource body

Qualified resource
qr ::= rs.rn Qualified resource
rs ::= x | any(C) Resource subject
rn ::= r Resource name

| ext(C).r Ext. resource name
Composite property
cpd ::= composite @p = (@p1, . . .@pc) Composite property definition

New and overridden judgments in Poplar1

Subsumption of resources

∆; Γ ` x : C ∆; Γ ` C ≺ C′

∆; Γ ` x ≺s any(C′)

∆; Γ ` C ≺ C′

∆; Γ ` any(C) ≺s any(C′)

∆; Γ ` rs ≺s rs
′

δ; Γ ` rs.r ≺ rs′.r

∆; Γ ` rs ≺s rs
′ C ≺ C′

∆; Γ ` rs.ext(C).r ≺ rs′.ext(C′).r
∆; Γ ` CE ≺ C′E

∆; Γ ` raw(ext(CE)).r ≺ any(C′E).ext(C).r

∆; Γ ` x : C′E CE ≺ C′E
∆; Γ ` raw(ext(CE)).r ≺ x.ext(C).r

Well-formedness of class definitions

T-FIELDOK1
C ≺1 C

′ ∆ ` Cf ok l
′
f ⊆ lf

∀r ∈ fr(C)(f)∃r′.r′ ∈ fr(C′)(f) ∧ r ≺ r′
∆f (C)(f) = Cf : Uf : lf
∆f (C′)(f) = C′f : Uf : l

′
f

∆ ` C.f ok

T-PROPOK
∀r ∈ res(C)(@p).∃r′.r′ ∈ res(C′)(@p) ∧ r ≺ r′

C ≺1 C
′

∆ ` @p ok

Resource field write

TS-RESFIELDWRITE
∆; Γ ` this : C1 : l1 : LS1!ρ1 C2 ≺ C3

∆; Γ ` e2 : C2 : Fresh : l2 : LS2!ρ2
∆f (C1)(f)(l1) = C3 : Unique : l

′
: rn

(LS1, ρ1)⊕ (LS2, ρ2)� ({this.f+ : l2}, ∅, ∅) = (LS, ρ)

l
′ ⊆ l2 and e2 6= x

∆; Γ ` this.f = e2; : void : LS!ρ ∪ {raw(rn)}

A composite property @p = (@p1, . . .@pn) is well-defined if each individual
property @pi is declared independently in some (possibly external) resource. We de-
fine res(@p)

def
=
⋃

i res(@pi), which affects the sens and rem mappings accordingly.
Composite properties may recursive contain other composite properties but are not
well-defined if the definition is cyclical. They behave like macros and are rewritten to

87

CHAPTER 4. FORMALISING POPLAR

sets of their constituent simple properties when method types, field types and queries
are formed from the source code. We do not specify this rewriting formally here.

The field type has been changed to indicate either the resource or the external re-
source (the two alternatives for the rn syntax) that a field may belong to.

External resources allow one class to host concrete state for another, providing it
with properties. This allows us to models constructs such as lists and containers. In the
judgments that concern external resources, we have identified external (hosted) types
by the metavariables CE and C ′E . CE is the class that receives its properties from
another class that contains concrete state. An example can be seen in Figure 3.1.

4.4 Discussion

4.4.1 Soundness
Although we do not provide a full type safety proof for our system, we believe that it is
fundamentally sound. In this section we discuss its soundness properties and how they
bear on the overall design and purpose of Poplar.

First, as we have already argued, for each syntactic form that remains in the com-
piled program, Poplar either strengthens typing judgments from MJ or leaves them
unchanged. So in a MJ/Java sense of the word, type soundness has not been violated.
The set of well-typed Poplar0 and Poplar1 programs is a subset of the set of well-typed
MJ programs.

In order to discuss ther properties that we want a well-typed Poplar program to
have, let us first establish a notion of Poplar soundness. Fundamentally we are inter-
ested in reasoning about the label sets of expressions, in the form of a may-analysis. It
is always acceptable to underestimate the set of labels that an expression currently has,
since we never ”do anything” (generate code) based on the absence of a label, but only
on the presence of one. Poplar has no negative preconditions. In order to establish this
soundness, we need to argue two points: first, that observed (used) labels have always
been established somewhere prior to their use, and second, that used labels have not
been erased prior to their use.

Establishing labels

Labels are established directly by methods with ++l annotations. For properties, the
method is expected to explicitly change some mutable state that corresponds to the
property’s predicate. For tags, the label need not correspond to a predicate, so there
is no such expectation. In Poplar0/Poplar1, new labels can be associated with an
expression in the following ways:

• By being provided as preconditions for a parameter or a receiver of a method or
constructor

• As postconditions of invocations of other methods or constructors

• As conditional labels of a resource field (corresponding to the current labels of
the field’s owner)

When a method is invoked with preconditions, the invocation is checked by Poplar, so
the first case only provides labels indirectly. In the case of an invocation of another

88

4.4. DISCUSSION

method, it may provide labels directly with ++l annotations, or indirectly with +l anno-
tations. In the latter case it is checked; in the former case the user is guaranteeing that
the label has been established. Finally, in the case of resource fields, any assignments
are checked by Poplar and verified to conform to the field’s constraints. Thus, all new
labels have a single common origin in ++l annotations of methods and constructors.

Erasing labels

Labels are either tags and properties. For tags, since they do not correspond to any
predicate or mutable state of expressions, it is impossible to erase them. They are
intended to correspond to immutable facts about expressions. The interesting case,
then, is the removal of properties.

The predicates that properties correspond to are not encoded anywhere but instead
explicitly set up by their basic establisher methods (which have an annotation of the
form ++@p). Each property must have at least one such basic establisher, or it cannot
come into existence. Just as properties can be established both directly and indirectly,
they can be lost directly and indirectly. A direct loss of a property would be a change of
the mutable state that corresponds to the property, which also invalidates its predicate.
An indirect loss of a property would be if a method invokes another method that directly
invalidates the property. We are thus concerned with two problems: taking note of
”direct losses” in the first place, and propagating them once they have been noticed.

Properties can in fact correspond to any state at all, not just state in the resource that
the property belongs to. This is a design choice that gives the programmer the freedom
to encode complex state in many different ways. For instance, in Poplar mixed with
full Java, a single field, such as an array, could conceivably be used to encode many
different properties in different resources. There are also native methods, which handle
resources such as I/O handles that have no direct representation in Java.

The direct loss of a property is easiest to track if the property’s state consists only of
fields that are both not shared with other resources and declared inside the property’s
resource. In this case, the Poplar system will insist that a resource mutation should
be declared whenever those fields are written (in rule TS-RESFIELDWRITE). In this
case it is hard for the programmer to make a mistake and erase properties without
declaring it. In more complex cases, the property will consist of state that cannot be
tracked by Poplar, such as native methods or fields that do not belong to resources. In
these cases, just as it is the programmer’s responsibility to establish properties fully
in ++@p methods, it is the programmer’s responsibility to annotate all methods that
could potentially destroy the property with the corresponding mutates annotation for
the resource. We believe that in well-designed classes, where related state is grouped
together - this is one of the cornerstones of object-oriented design - this will not be a
difficult task.

Once the mutation of a resource has been indicated, the Poplar effect system will
insist that this information is propagated accordingly, much in the same way Java ex-
ceptions are propagated. An invocation of a top level method will always be annotated
with all the externally visible resource mutations that can potentially take place. In
particular, mutations of any aliased variables and parameters and receivers passed in
will always be visible. The only mutations that may be hidden are those of fresh or
unique references that are not reachable from the outside while a method invocation
takes place.

The main source of potentially lost mutations in the tracking of resource mutations
is that for external resources, we have no way of associating the mutation of the re-

89

CHAPTER 4. FORMALISING POPLAR

source with a specific object or group of objects. Thus, we rely on the programmer to
declare this information honestly in those methods that perform such direct mutations
of external resources. We leave potential remedies of this problem for future work. The
approach taken in FUSION [58] may be applicable to this problem.

Towards a type safety proof

We have not provided a type safety proof in this chapter. Parkinson et al. prove the cor-
rectness of their version of the Boyland-Greenhouse effect system for MJ by making
reads and writes of regions explicit and tracking them in an extended semantics [18]. It
is possible that in the future, the correctness of Poplar0 and Poplar1 might be proved
using a similar approach. We believe that Lemma 1 would be helpful in a type safety
proof, since many of the judgments use the chaining operation, and this lemma demon-
strates that label signatures remain well-formed after chaining, so further chaining will
always be possible.

Summary

We now summarise our soundness argument. In Poplar, programmers have two key
responsibilities with regards to label tracking: ensuring that properties are indeed cor-
rectly established by ++@p methods, and that they report all the ways that such a
property may be erased by annotating methods with the corresponding mutates anno-
tations. As long as this has been done correctly, Poplar will conservatively propagate
this information throughout the program. We believe that Poplar provides a sound
must-analysis for labels of expressions, and a sound may-analysis for aliasing and for
resource mutations.

4.5 Related Work

In this section we discuss related work in the areas of typestate checking, effect sys-
tems, and alias confinement, since these areas are closely related to the design of
Poplar0 and Poplar1. We discuss a wider range of related work in Section 7.1.

4.5.1 Typestate and protocols
Typestate checking was originally introduced by Strom and Yemini in 1986 [110] as a
means of checking the degree of initialisation of each variable statically. The language
that they study is not object-oriented, and does not permit arbitrary pointer assign-
ment. They capture errors such as access of unitialised variables. In their system,
typestates form a lower semilattice that describe the degree of initialisation of each
type. Transitions between typestates occur as a result of program statements. As a re-
sult, restrictions on the typestate transitions form a finite state machine that constrains
valid statement sequences in the language, excluding many nonsensical program er-
rors. Yellin and Strom also require that there should exist a unique typestate coercion
from higher to lower typestates, so that de-initialisations can always be found.

Object protocols are closely related to but different from typestate in that they em-
phasise valid message/method sequences that objects may receive and send. As such,
they were first defined by Yellin and Strom [125]. They define a notion of protocol
compatibility where a protocol is compatible with another if there is a sublanguage

90

4.5. RELATED WORK

relation between the languages represented by the protocols’ automata. They con-
sider software component in a very general sense, considering both concurrent and
non-concurrent implementations. They describe an algorithm that, given an interface
mapping, either synthesizes a protocol adapter, or concludes that no such adapter ex-
ists. Such adapters can store temporary data in memory cells, and translate incoming
message sequences to the appropriate outgoing sequences.

In a later object-oriented adaptation of typestate by DeLine and Fähndrich [27],
the requirement that typestates should model degrees of initialisation was dropped.
DeLine and Fähndrich, and most of the following research on object-oriented typestate
analysis, instead focus on the finite state machine aspect. Their system, called Fugue,
is designed for a subset of C#. They get around the aliasing problem by providing
explicit annotations such as NotAliased and MayBeAliased, similar to our Unique
and Normal . These are typestates in themselves.

A key contribution of Fugue that makes object-oriented typestates intuitive is the
introduction of frame typestates and sliding methods. In general, a typestate corre-
sponds to a predicate on the concrete state of an object, that is, its fields1. Subclasses
of a class that implement logically discrete states often extend the definition by adding
more fields, implementing the same state change in a slightly richer way. In other
words, subclasses must be able to override and extend typestates in the same way that
they can override methods. However, subclass methods often make use of superclass
methods when they implement their extended version of a particular state. To handle
this, a typestate in fugue is modelled as a series of frame typestates - one part of the full
state belongs to each class frame, that is, for each superclass level. Overriding, sliding
methods can express what frame they assume for a particular state to be realised at, and
what level they ultimately extend it to, if any. Each sliding method is assumed to make
a call to its superclass counterpart before implementing its own additions to the state.

In this chapter, for the sake of simplicity, we avoided this problem by requiring
that properties are always required across all class frames simultaneously. We do not
permit the use of a property until it has been fully initialised at all levels in its class
hierarchy. This is a significant restriction for the programmer, and it would be worth-
while to investigate, as a future extension, an explicit modelling of different degrees of
establishment of a property. We expect that this can be done in the same way as Fugue
models typestates; one challenge would be keeping the syntax simple while doing so.

The concrete predicates that typestates correspond to are typically not specified.
Fugue specifies whether references may or may not be null, but no other constraint
on an object’s data is encoded. External contract checkers such as ESC/2 may be
applied to confirm that typestates indeed correspond to given predicates. However,
this is typically not a problem of great concern, since typestate transitions tend to be
declared together with mutations of the data that they concern, especially in object-
oriented programs.

Bierhoff and Aldrich add several new capabilities [14] beyond what was supported
by Fugue. They introduce the notions of state refinement, method refinement and state
dimensions to allow typestates to be integrated in a more natural way with objects,
and in particular with behavioural subtyping, in which overridden methods may, for
instance, have weaker preconditions and stronger postconditions. In their system, sub-
classes can refine states by adding increasingly fine-grained substates and refine meth-
ods by making use of the new substates.

1In full Java objects may also have access to state outside of the language itself through the use of native
methods

91

CHAPTER 4. FORMALISING POPLAR

Aldrich et al have proposed typestates as first-class objects supported by the type
system [3]. They also deal with the aliasing problem by introducing explicit aliasing
annotations such as shared, immutable, conserved, etc. in the language, thereby
encoding the programmers’ intentions. They introduce the programming language
Plaid [113] as an implementation of these ideas. Plaid targets the JVM but empha-
sises runtime state change, and states have explicit runtime support. Plaid does not use
the typestate formalism as an integration aid, but more traditionally as a formalism that
supports programmers in simplifying the development of correct software.

Naeem and Lhotak [82] have defined a formal lattice-based operational semantics
for multiple interacting objects, expanding the range of what can be checked from
constraints on a single object to multi-object interactions.

Fink et al have implemented a multi-stage typestate verifier [32] for a subset of
the Java language, excluding concurrency and special features such as generics. For
selected typestate properties across a range of moderately sized input programs, their
system detects errors with 93% accuracy in 10 minutes.

On the theoretical side, Field et al have obtained results [31] about the complex-
ity of verifying typestate correctness in shallow programs, that is, programs where
heap-allocated objects do not contain pointers to other objects. They demonstrate that
depending on the state being verified, some instances can run in polynomial time, while
others are more complicated. They are able to show that verifying that a file is not read
after it has been closed can be done in polynomial time; verifying that a file is not read
before it has been opened is PSPACE-complete. The reason for this high complexity
is that the programs are basically unconstrained except for the requirement that they
should be shallow. We will see in the next chapter that Poplar label checking is a much
less complex problem.

Alfaro and Henzinger consider the verification of interface automata in their 2001
paper [5]. Their approach is based on an optimistic game-theoretical model; they as-
sume that two interfaces are compatible if some environment E that makes them com-
patible exists, rather than considering them incompatible if there is some environment
E’ that makes them incompatible.

Alur et al describe [7] how to synthesise interface specifications for Java classes
from their source code. They start by extracting the state transition system using pred-
icate abstraction, and then solve a partial-information two player game on the repre-
sentation obtained. Their method yields a maximally safe interface, which can, in the
context of Java, take actions such as throwing exceptions when it detects an invalid
method sequence. They evaluate a tool, JIST, for the extraction of these interfaces, and
show it to be reasonably fast for moderately large classes.

In addition to static specification and checking of typestate, there are systems that
learn and enforce temporal specifications at runtime. Gabel and Su [36] have designed
one such system and showed that it produced valuable results on real world systems.

Kim, Bierhoff et al showed how to encode typestates in the JML Java specification
language [16]. This makes the typestate concept available to the wide range of tools
that are founded on JML and avoids the need for a nonstandard syntax.

Kuncak, Lam and Rinard redefined typestates in a more general way [65]: instead
of associating a state with each object, they track general sets that correspond to states,
and objects in a given set are considered to have the state associated with it. This fits
abstract data types (ADTs) naturally.

We discussed how Prospector provides interactive developer support and suggests
code fragments to the user based on pre-mined protocols. A similar system is Alfonso’s
system [6], in which protocols are explicitly specified in advance. An interactive IDE

92

4.5. RELATED WORK

plugin gives the user concrete suggestions as to how to change the code they have
written in order to conform with the protocol specifications. This is an example of a
use of the protocol formalism that does not constrain programmers, but supports them
in ways that they may freely choose to accept or reject.

4.5.2 Effect systems
Type and effect systems extend type systems by also tracking side effects. Such sys-
tems can ensure that there is no unwanted interference between two code fragments.
For an accessible overview of effect systems, a good choice is the book by Nielson,
Nielson and Hankin [84, Chapter 5], though this book does not focus on Java.

The Boyland-Greenhouse effect system [46] was a key inspiration for this work.
Its key contribution is grouping Java fields into abstract regions, which may also be
refined into subregions. Methods specify both what regions they read and what regions
they write, yielding the ability to identify when two methods (or fragments) interfere
with each other. However, unlike our system, interference cannot be characterised as a
set of lost properties. Only the absence or presence of interference can be detected.

Data groups [71, 70] were a precursor to the Boyland-Greenhouse effect system.
They name groups of fields in objects polymorphically, and then annotate methods with
information saying what groups they may modify. The main difference with the B-G
system is that data groups are not disjoint, which means that the system cannot be used
to detect interference.

The first effect system to be studied was in FX-87 [43]. Talpin and Jouvelot de-
veloped systems that permitted effect inference [115, 61], which reduces the burden of
having to annotate each method by hand.

One form of effect analysis that has received special interest in the context of Java
is purity analysis. A method is pure if it has no observable side effects. Note that this
still permits the method to mutate its own internal state. Sǎlcianu and Rinard contribute
a purity and side effect analysis [98] that combines escape analysis and pointer analy-
sis. They are able to classify parameters into read-only parameters, through which no
transitively reachable references are mutated, and safe parameters, whose transitively
reachable references the method does not create any new parameters to. However, this
system, and the other ones discussed so far, are not modular. Pearce developed one of
the first modular purity systems for Java [93], which uses the properties of freshness
- similar to the notion of fresh references used in this chapter - and locality, which is
a slightly modified form of ownership. The notion of modularity used in his system
is similar to Poplar’s annotations in the sense that it generates summary information
(annotations) for each method, and that a method can be checked by inspecting only its
local source code and the summaries of methods it references.

4.5.3 Alias confinement
The concept of unique pointers was first studied by Minsky et al [80].

Clarke formalised ownership analysis as an extension of Pizza [24]. His system
does not relate objects directly to each other, but rather relates contexts to each objects.
Ownership analysis is at the expense of a slightly more complicated syntax, since ob-
jects must be parameterised with owner references if they are to take advantage of
ownership annotations.

Aldrich et al have developed AliasFJ, a Featherweight Java (FJ) extension with
alias annotations and a notion of ownership that relates objects directly to each other.

93

CHAPTER 4. FORMALISING POPLAR

They have also showed how to infer alias annotations.
Islands [51] are a notion of encapsulation especially designed for alias confinement.

An island is a subgraph of the heap reference graph. Objects in an island may hold any
number of references to each other, but there must only be a single object, the ”bridge”,
through which the island can be reached. This constraint is only for static references,
though. Dynamic (stack) references between objects in an island and objects outside
the island are permitted in either direction. We are not aware of any implementation of
this concept, although it can be seen as a precursor to alias ownership.

Zhao, Palsberg and Vitek have developed the notion of confined types [133], also
for FJ. Assuming a notion of a module, they assume that each module has a set of types
that is strictly intended for internal use and a set intended for public use. Aliases are
constrained on a type basis: references of confined types in a module may not be leaked
to objects that belong to types of other modules.

A more general version of the alias confinement problem is points-to analysis,
which has been studied for a long time in C-family languages, including Java. Points-to
analyses have a wide range of applications, not least in compiler construction (CITE).
The question asked here is, for a given reference, which objects may it point to?
Such analyses are typically classified according to whether they are context-sensitive,
whether they are flow-sensitive, and whether they are interprocedural or intraproce-
dural. Michael Hind’s 2001 survey [50] gives an overview of classical results and
questions in the area, which include algorithms include Steensgaard’s algorithm [107]
and Andersen’s algorithm [8].

For a language like Java, it is generally hard to obtain precise points-to-analysis re-
sults through a modular analysis, and as we have already mentioned, Java’s incremental
classloading makes non-modular analyses a poor match for the language. Salcianu de-
veloped a method that is able to perform a correct analysis by storing pre-computed
parameterised summaries for each method, and then later instantiating this informa-
tion [101].

4.5.4 Other related work

Summers and Müller have proposed a lightweight type system for object initialisa-
tion [111]. It uses a simple escape analysis to prevent objects from escaping before
they have been fully initialised. This could potentially be combined with our basic
establishers to give programmers more freedom in how properties are initialised.

Jaspan and Aldrich [58] have developed an analysis, FUSION, for checking re-
lationships in frameworks. This allows objects to relate to each other by means of
named relationships, such as the relationship of being an item in a container. Interfaces
can specify invariants, preconditions and postconditions in terms of relationships and
their changes. This formalism corresponds, on some level, to the notion of external
resources in Poplar, and it is likely that a combination of relationship analysis with
resources could increase Poplar’s precision significantly, especially with regards to the
problem of identifying the object that corresponds to an external resource mutation.

4.6 Conclusion

In this chapter, we formalised Poplar, first as a minimal subset Poplar0, and then as
the slightly extended version Poplar1, which provides external resources. We gave the

94

4.6. CONCLUSION

syntax of both systems, as well as typing judgments, well-formedness judgments and
helper functions needed to type Poplar programs.

Poplar fundamentally provides a must-analysis for labels, and a may-analysis for
mutation of resources, which is the main way that labels may be destroyed. Although
we have not provided proved these analyses correct, we argue that we are always able to
detect mutation of resources and require that labels are established before being used,
and that we are able to propagate this information accurately.

The analysis presented in this section is fully modular and only makes use of the
local source code and summary information of other classes’ methods when judgments
are evaluated. This chapter did not discuss how to implement a Poplar type checker;
we will describe our implementation of such a checker in Chapter 5.

We saw that a complication is introduced by subclasses strengthening the meaning
of properties by overriding basic establisher methods. In such cases, a property can
be in one of several degrees of initialisation: it might have been established for some
higher level class frames but not for some lower level ones. We solve this provisionally
by insisting that properties should always be established for all class frames simulta-
neously, and making the programmer responsible for not making use of properties that
have only been partly established. We leave a better solution for future work.

The main source of inaccuracy in the analysis is the way that aliases are handled:
mutations are always identified either as x.r for some variable x or as any(C).r for
some type C, the latter case corresponding to any variables that might be aliased. This
is sound but not precise. A source of possible lost mutations is the fact that external
resource mutations cannot be definitely linked to the variable that they occur on. It
is the programmer’s responsibility to identify such variables correctly, which adds a
potential risk when the system evolves. However, we can always correctly identify the
fact that some variable’s external resource has been mutated.

We emphasise that the design of Poplar is not tightly coupled to any particular
alias confinement system. Our approach based on uniqueness kinds was chosen for its
relative simplicity, but a more sophisticated approach, for instance one that contains a
notion of ownership, such as in AliasFJ [2], may be used to increase the precision of
our approach.

This chapter has not discussed how to implement a checker or query solver for the
system we have presented; we will address this in the next chapter.

95

5
The Design and Implementation of a

Poplar Compiler

In this chapter we describe the design and implementation of Jardine, a Poplar com-
piler. Alexandre Pichot, of the University of Pierre and Marie Curie in Paris, France,
contributed significantly to its development.

5.1 Selecting a foundation for Jardine

Since Poplar is an extension of Java, rather than implement an extended Java compiler
from scratch, we chose to extend an existing Java compiler. In order to reduce the
complexity of the implementation effort, and given that we deal with the core features
of Java rather than sophisticated ones, we decided to base our work on a research
compiler rather than an industrial compiler such as Oracle’s official OpenJDK. Several
Java compiler frameworks were considered.

JaCo [131] was developed to support the Java extension Keris[129].

JastAddJ JastAdd [29] is built on a novel aspect-oriented architecture, which facili-
tates addition of features to Java by writing only a very small amount of code,
avoiding the need to explicitly handle the new feature in many different places
throughout the compiler.

Jikes [52] is a high performance compiler developed by IBM.

JKit JKit [92] is a straightforward, recent Java 5 compiler developed by David Pearce
for research and teaching purposes. It has been used to develop a modular Java
purity checker [93] and is currently being used to develop the Whiley language.

Polyglot Polyglot[86] is a straightforward Java compiler designed for research and
teaching. It has been used to develop a variety of Java extensions.

Spoon [55] is a Java compiler and processing framework developed by INRIA. It is
well integrated with Eclipse and provides a Spoonlet architecture that allows new
analyses and transformations to be plugged in easily.

We decided to use JKit as a basis for our compiler for several reasons. Firstly, a
recent release is available. At this time of writing, the most recent release of JKit is
from 2010, making it more current than the other compiler frameworks. Second, JKit
has relatively mature support for Java 5, which included major changes to the Java

97

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF A POPLAR
COMPILER

language, such as generics. This means that tools based on JKit can be used to process
large, modern Java programs, as long as they do not invalidate existing functionality.
Third, JKit has a relatively simple design that follows classical compiler principles,
which was helpful in reducing the overall complexity of the implementation task.

In the following, we first describe the structure of JKit and the overall strategy we
used when implementing Jardine. We then describe how Jardine modifies JKit and adds
new components. We describe the Jardine compilation pipeline and each compilation
stage, including key algorithms. After this we give some concluding remarks. Jardine
has been released as open source software and is available for download from http:
//www.poplar-lang.org.

5.2 The tasks of a Poplar compiler

What tasks should a Poplar compiler perform? We discussed a possible workflow for
Poplar software development in Section 2.4.9. Three tasks that rely on automated tool
support were identified.

Query solving in which concrete integration code is constructed and substituted for
queries. Such code is correct by construction.

Poplar checking or method contract checking, in which method and constructor bod-
ies are verified against their method signatures. This is the equivalent of per-
forming typestate checking.

Integration link verification in which, following a component upgrade, the new ver-
sions are tested for compatibility with the rest of the components without recom-
pilation or re-solving of queries.

Our implementation performs query solving (see Section 5.9 and Poplar checking
(see Section 5.8). Due to time constraints we have not implemented integration link
verification, but we discuss how it could be implemented in a straightforward manner
in Section 5.10.

It is interesting to note that these three tasks are, to a degree, independent. It is pos-
sible to benefit from Poplar checking without using the automated integration scheme
at all. In this case Poplar would act purely as a static checker. It is also possible to
use the automated integration without checking methods for conformance with their
contracts, although we believe that this would have little merit, since it would be easier
to introduce errors by mistake, and it is natural to try to reap the maximum benefit once
one has added Poplar annotations to source code.

Our aim in producing this implementation has been to create a proof-of-concept
compiler that is sound. We have not attempted to optimise for performance or to use
the most sophisticated implementation techniques available. Whenever possible, we
tried instead to use straightforward algorithms and data structures.

5.3 Mixed Java and Poplar compilation

The formalisation presented in Chapter 4 only specifies Poplar for an imperative core of
Java. But JKit, the basis for Jardine, implements a full compiler for Java 5, which has
additional features not specified in Poplar0 or Poplar1, including arrays, exceptions,

98

http://www.poplar-lang.org
http://www.poplar-lang.org

5.4. AN OVERVIEW OF OF JKIT

interfaces, abstract classes and generics. This means that Jardine necessarily has a
different scope from the formalisation. It is compiling a mix of Java 5 and Poplar1.

Jardine implements all of the Poplar0 and Poplar1 specifications, with two notable
exceptions: the (drop) TS-DROP statement (Section 4.2.9) and well-formed overriding.
The drop statement was left out due to time constraints. However, omitting it can never
lead to unsound results, only to the inability to find valid Poplar types or solutions in
some cases. Well-formed overriding of methods and fields was also unimplemented
due to time constraints. These functions should be straightforward to implement in
the future; a checking algorithm follows from the well-formedness judgments in a
straightforward way (Section 4.2.6). In the absence of such checking, Jardine simply
assumes that any overridden methods and fields have acceptable Poplar signatures.

There are also some features that have been implemented but not formalised. The
most important difference is that Jardine can compile all of Java 5, which means that
many statements lack a clear Poplar semantics. We handle this by partitioning methods
and constructors into Poplar methods and plain methods, according to whether they
have a Poplar signature or not. For Poplar methods we require that all statements
should have a well defined Poplar semantics, and we check the method in full. For
plain methods we perform no special checking, and compile them as ordinary Java
methods. This raises the question as to what to do when data flows between Poplar
methods and plain methods. Such data flow can pose a risk in two ways.

Data flow from plain to Poplar methods. This can happen if, for instance, a plain
method calls a Poplar method that assumes certain labels to be present on the
incoming parameters. The caller may not necessarily provide these labels, and
there is no way to check compliance. The lower bound guarantee on labels is
threatened.

Data flow from Poplar to plain methods. This can happen if a Poplar method must
call a plain method. From the point of view of the caller, variables being passed
as arguments may be constrained in terms of the resources that may be mutated,
but there is no way to guarantee this once a reference has passed to plain territory.
The upper bound guarantee on resource mutations is threatened.

In Jardine, we do not handle these problems. We simply permit data flow between plain
and Poplar methods with no restrictions. This causes a minimum of inconvenience
when we incrementally annotate existing software components with Poplar specifica-
tions (as we will see in Chapter 6. We assume that plain methods mutate no resources,
and that incoming variables have all the labels that they are supposed to have. This
approach is clearly unsound and presumes a high level of trust in the programmers.
It would be straightforward to implement a more restrictive approach, for instance by
producing warnings or errors when data crosses the Poplar/plain boundary. One ad-
ditional minor feature that has been implemented but not formalised is that Jardine
permits static methods and fields to have Poplar signatures. The reason for not formal-
ising this was that MJ lacks static members. Static methods and fields are treated just
like instance methods and fields except that they do not specify any constraints on the
receiver, since they have none. We believe that this is sound.

5.4 An Overview of of JKit

The JKit Java compiler is itself implemented in Java. It has a straightforward architec-
ture based on a staged pipeline, where each stage performs a small part of the compila-

99

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF A POPLAR
COMPILER

tion process. Java files pass through multiple representations on their way from source
code to compiled class files. For our purposes, the most important representations are
the AST representation, which is represented by a class hierarchy in the jkit.java.tree
package, and the JIL intermediate format representation, which is represented by a par-
allel hierarchy in the jkit.jil.tree package. For more detailed information on JKit than
we give here, the reader may refer to the JKit websites [92, 91].

The following is an overview of the various compilation stages, in the order that
they occur in the pipeline. Figure 5.1 shows this graphically.

Java file reading Reads source files and prepares the AST representation. The parser
is generated from an ANTLR [90] grammar.

Skeleton discovery Scans Java source file ASTs for references to other classes.

Type resolution Resolves type names by examining imported packages and the class-
path.

Skeleton builder Inserts fully qualified type names and other information into the
skeletons found during skeleton discovery.

Scope resolution Resolves variables by identifying the scope (method, class, etc) that
they belong to.

Type propagation Propagates type information from declarations to other expressions
and statements.

Constant propagation Replaces known constant expressions with the concrete value
that they represent.

Type checking Performs Java type checking.

Anonymous class rewrite Rewrites anonymous inner classes into classes with proper
generated names.

Inner class rewrite Rewrites inner classes and adds the implicit reference to the outer
class.

Enum rewrite Rewrites enums to the underlying classes and constants that represent
them.

JIL generation Generates the JIL intermediate representation that is used for late
stage analysis and rewriting.

Dead code elimination Eliminates dead code.

Definite assignment Checks that each variable has definitely been initialised.

Bypass methods Inserts additional redirection methods into classes with generics to
allow the JVM to find all methods using the old-style non-generic method signa-
ture.

Bytecode generation Generates Java bytecode.

Peephole optimisation Performs local optimisations.

Classfile generation Generates Java classfiles.

100

5.4. AN OVERVIEW OF OF JKIT

Front end Back end

Skeleton discovery

Skeleton builder

Type propagation

Java file reader

Type Resolution

Scope resolution

Type Checking

Anon Class Rewrite

Inner class rewrite

Enum rewrite

Jil Builder

Class File Builder

Constant propagation

Dead code elimination

Definite assignment

Bypass methods

Bytecode generation

Peephole optimisation

Figure 5.1: The JKit compiler pipeline

101

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF A POPLAR
COMPILER

JKit package Jardine package Description
jkit jp.ac.nii.jardine Main package
jkit.bytecode jp.ac.nii.jardine.bytecode Bytecode representation and processing
jkit.compiler jp.ac.nii.jardine.compiler Main compiler framework
jkit.java.io jp.ac.nii.jardine.io AST construction
jkit.java.parser jp.ac.nii.jardine.parser Java/Poplar parsing
jkit.java.stages jp.ac.nii.jardine.stages Early compiler stages
jkit.java.tree jp.ac.nii.jardine.tree AST representation
jkit.jil jp.ac.nii.jardine.jil JIL representation
(none) jp.ac.nii.jardine.util Logging, collections and other utility classes
(none) jp.ac.nii.jardine.poplar Poplar-specific analysis and transformation
(none) jp.ac.nii.jardine.planning Partial order planning
(none) jp.ac.nii.jardine.poplar.pop Domain-specific planning for Poplar

Figure 5.2: Selected Java packages in JKit and Jardine, and their roles.

5.5 An Overview of Jardine

In extending JKit, we have treated it as a library and built Jardine as an application
external to it to the greatest extent possible. In other words, we have tried to minimise
the amount of changes made to JKit itself and instead opted to extend its classes and
override methods selectively when changes had to be made. This strategy should allow
us to upgrade Jardine to use future upstream versions of JKit with little effort. Packages
in the jkit.* hierarchy have been given equivalents in the jp.ac.nii.jardine.* hierarchy.
For instance, jkit.java.tree generally corresponds to jp.ac.nii.jardine.tree in our ex-
tended version. In the latter package, we have placed classes that override classes in
the former. Figure 5.2 shows the relationships between packages in Jardine and JKit.

Jardine adds new stages to the JKit compiler pipeline and modifies some existing
ones. The stages up to and including JIL generation are the compiler’s frontend, and
the subsequent stages are the backend. Our modifications took place in the frontend
only. The JKit stages that have received nontrivial modifications are Java file reading,
scope resolution, skeleton building, type resolution and type checking. The newly
added stages in Jardine are label resolution, uniqueness resolution, Poplar checking
and query solving. Figure 5.3 shows the Jardine compiler pipeline.

The nontrivial modifications to existing stages were as follows.

Java file reading We extended the existing ANTLR grammar to include the Poplar
language extensions, such as resource and label declarations and Poplar signa-
tures of methods. We generated a new parser and enhanced the file reading stage
to check basic correctness of property and resource declarations, and construct
additional representation objects where necessary.

Scope resolution The main task of this stage is to find the declaration site that corre-
sponds to each variable use. We augmented it to take into account the fact that
queries can reference and declare variables. For instance, produce-queries can
take the form T x = #produce(x, T) which declares a variable of type T. This
declaration is considered to be part of the query itself and not an assignment
expression. Transform-queries can take the form #transform(x, l) which refer-
ences the variable x. These variable declaration and use forms must be regarded

102

5.5. AN OVERVIEW OF JARDINE

Front end Back end

Skeleton discovery

Skeleton builder

Type propagation

Java file reader

Type Resolution

Scope resolution

Type Checking

Anon Class Rewrite

Inner class rewrite

Enum rewrite

Jil Builder

Class File Builder

Constant propagation

Dead code elimination

Definite assignment

Bypass methods

Bytecode generation

Peephole optimisation

Uniqueness checking

Label resolution

Poplar type checking

Query solving

New stage

Stage with nontrivial
modifications

Unchanged stage

Figure 5.3: The Jardine compiler pipeline

103

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF A POPLAR
COMPILER

Kind Assumption Guarantee
Normal None None
Unique No aliases No future aliases
Uniquer No aliases A single new alias is possible through destructive read
Maintain None No future aliases
Maintainr None A single new alias is possible through destructive read

Fresh No aliases None

Figure 5.4: Uniqueness kinds used in Jardine

as equal to preexisting definition and use forms.

Skeleton building This stage builds (by loading classes or carrying out additional
compilation) compact representations of other classes encountered while compil-
ing a given file. Such representations contain type signatures but no executable
code. We extended the stage to also add Poplar declarations such as labels, re-
sources and Poplar signatures to each class and class member in full.

Type resolution This stage attempts to resolve each unqualified type name mentioned
in classes being compiled and transform them into fully qualified type names.
Poplar introduces several new ways that a class can reference other types, includ-
ing mentioning them in queries, as in the example above, and through declaring
or mutating external resources. We extended this stage to also resolve such types.

Type checking We modified the type system itself to include uniqueness kinds as an
attribute of every reference type, and enhanced the type checking stage to let
queries pass without any further checking. The main checking of new Poplar
typing rules was designed to take place not here, but in the uniqueness resolution
stage and the Poplar checking stage.

5.6 Uniqueness Checking Stage

Poplar describes parameters, receivers and return values in terms of the assumptions
made and invariants guaranteed about their uniqueness. Unique variables are definitely
unique, and remain unique. Maintain variables may not be unique, but no new aliases
are created. Normal variables, which are the default, have no associated assumptions.
In addition, Maintainr and Uniquer (”maintain retains”, ”unique retains”) correspond
to Maintain and Unique , except that they may create at most one new alias through
a destructive read. These ”retains” kinds were not formalised in Chapter 4, although
they are supported by Jardine. Figure summarises Jardine’s uniqueness kinds.

The uniqueness checking stage simply traces, for each variable, the data flow that
it passes through and verifies that no incompatible flow takes place. This corresponds
basically to the uniqueness restrictions imposed by the judgments in Chapter 4, with
the difference that Maintainr and Uniquer also are checked. These two are treated
exactly as Maintain and Unique with the exception that a destructive read is permitted
for the transfer of a reference. In the example given in Figure 5.5, the first invocation in
o, n(zz);, will be accepted. The second invocation, n(z); is invalid. In theory, the third
invocation, n(zzz);, is valid, since a local variable goes out of scope, although this case
has not yet been implemented. An explicit null assignment to a field or a variable is
currently necessary for Jardine to accept the transfer.

104

5.7. LABEL RESOLUTION STAGE

1 class C {
2 C f:(unique);
3 void setF(C x) x: uniquer. { this.f = x; }
4 void n(C y) y: uniquer. { setF(y); }
5 void o(C z) z: unique. {
6 C zz = new C(); //unique
7 n(zz);
8 zz = null; //Destruction validates the previous method invocation
9 n(z); //Error: z is not (and cannot) be destroyed

10 C zzz = new C(); //unique
11 n(zzz); //Theoretically valid (goes out of scope) but not supported
12 }
13 }

Figure 5.5: Destructive read examples

5.7 Label Resolution Stage

The label resolution stage must, for each label that is referenced in a Poplar signature,
composite property, or query, check that it has been declared exactly once in the im-
ported classes, and annotate it with a mapping to the declaring class. This allows us
to use properties from a given class in queries from another class, as we would expect.
The resolution algorithm traverses all explicitly imported classes and packages when
attempting to resolve labels.

5.8 Poplar Checking Stage

The Poplar checking stage contains the main procedure for checking that label assump-
tions are satisfied in user-written code. It also generates information that is used later
by the query solving stage. Basically, this stage traverses each method and constructor
body in each class and tries to find a valid Poplar type for it if it is a Poplar method,
that is, if it has a Poplar signature. A Poplar type of a method or constructor body
exists if and only if there is at least one way to satisfy all label constraints inside the
method body and it satisfies its own contract. This means that at each point where
some assumption about an expression’s label set is being made, we must verify that the
expression has at least the assumed labels.

The type checking performed by this stage corresponds closely to the theoretical
framework described in Chapter 4. A complication arises from the fact that this system
cannot be checked in a syntax-directed way, and for each method body, the checker
must potentially explore a search space of partial typings until a full typing has been
found.

5.8.1 Representation of Poplar types
Recall from Chapter 4 that a statement type has the form ∆; Γ ` s : τ + LS!ρ, and that
an expression type has the form ∆; Γ ` e : C : l + LS!ρ.

The three most important classes that represent Poplar types are LabelSignature,
StatementType and ExpressionType. ExpressionType is a subtype of Statement-
Type since it needs to carry more information, such as the type and labels of the value
computed. Statements do not need this, since in the Java evaluation model they are cast

105

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF A POPLAR
COMPILER

1 class House {
2 resource access { properties @closed, @open, @secureClosed; }
3
4 Door d:(@closed -> @closed, @unlocked,
5 @open -> @open, @unlocked,
6 @secureClosed -> @closed, @locked);
7
8 Door getDoor() this: @open, result: +@unlocked. {
9 return d;

10 }
11 }

Figure 5.6: A field access with a disjunctive specification. For the field d to be @unlocked, the
owning House has to be either @closed or @open.

to void type if they are not already of this type. These three types correspond directly to
label signatures, statement types and expression types in our MJ-based formalisation.
The label signature contains a mapping from subjects to conditions. A condition can be
an addition, direct addition, subtraction or invariant coupled with a label, correspond-
ing directly to what is written syntactically in Poplar method signatures. A subject can
be bound or unbound: a bound subject is a local variable with a definite name, and an
unbound subject is a receiver, a result or a parameter.

5.8.2 Principles behind the checking algorithm
As in the TS-SEQ rule and similar rules, checking of a method proceeds from bottom
to top. In a statement sequence s1; s2; . . . sn−1; sn, first sn−1 and sn are typed, and
then the chaining operation is applied to combine the types of these two statements.
A complication arises from the fact that each statement or expression can in fact yield
multiple valid types. To see why, consider what happens when we attempt to type the
field access in the method getDoor in Figure 5.6.

From the declaration result: @unlocked we know the desired labels for the ex-
pression being returned by return d. To know the labels of d we inspect its declaration,
and find that it has different labels depending on the labels of the owning object, which
we need to have either the property @open, or the property @closed. At this point we
construct two different types of the return d statement: one in which this is assumed to
have the label @closed, and one where it is assumed to have the label @open. These
assumptions are tracked as either invariants or subtractions in the label signature that is
part of the statement’s type, depending on whether the label will be lost at a later stage.
Depending on the remaining statements to be typed, which would have been the ones
preceding the return statement, some number of the constructed types remains viable.
The ones that are found not to be viable, because they cannot be satisfied, are dropped.
The ones that remain viable may give rise to further combinations. At the point where
there are no statements remaining to be typed in the method body, which is immediately
in this case, the remaining assumptions are compared with the preconditions provided
by the method’s signature itself. This corresponds to the expanded prior signature (see
Section 4.2.10). In this case this is found to have the property @open, which satisfies
one of the two types, so the check passes. In general, the check passes if at least one
viable type can be found.

The general idea behind our checking algorithm is as follows. As we have just seen,
statements or types can potentially have multiple valid types when inspected locally,

106

5.8. POPLAR CHECKING STAGE

but when they must be made to fit into a context, some types do not fit the applicable
constraints, and can thus be ruled out. Checking a method body is the process of finding
a valid type for each statement and expression such that the types are compatible with
each other and with the surrounding constraints (prior and posterior expanded signa-
ture). In order to do this, we traverse each method body in reverse (which corresponds
naturally to the sequencing rules in Section 4.2.9) constructing first all possible types
for each statement, and then all valid combinations of that statement with the following
statements.

Note that in Jardine, Java type safety has already been checked by the time the
Poplar type checking stage is run. For this reason there is no need to check Java types in
this stage, although we sometimes make use of them when checking the Poplar types.
Uniqueness has also already been verified at this stage (by the uniqueness checking
stage), which means that this stage only needs to focus on tracing labels.

Algorithm 1 is the abstract, generalised form of the checking procedure for each
term. The constant unitType is the type of an effect-free empty statement with no
resource mutations, no preconditions and no postconditions. First, the term is broken
down into its subterms. Then the potential types of each subterm are computed in
isolation. We track each possible assignment of types with respect to each subterm,
represented here by the Cartesian product. A term with 3 subterms and n types for each
subterm would have a total of n3 ”raw” combinations. In the next step, inconsistent
combinations are removed (for instance, if label preconditions cannot be satisfied, i.e.
if (LS1, ρ1)⊕ (LS2, ρ2) ok) is false, see Section 4.2.1) and the valid combinations are
chained (sequentially composed) together into types for the entire term.

It is important to note that the order of composition of types of the subterms will
always correspond to the evaluation order of the term when the program is running.
For instance, in an if-statement, the truth condition is always evaluated before any of
the branches. This ordering corresponds to what was formalised in Chapter 4.

Algorithm 1 Check term (generalised): checkTerm(t, IDL,DL)

fullTypes← {unitType}
for each subterm st ∈ t do
stIDL← computeIDL(st,DL)
stTypes← checkTerm(st, stIDL,DL)
fullTypes← fullTypes× stTypes

end for
sequentialTypes← ∅
for ft ∈ fullTypes do

if ft is a sequentially consistent typing then
sequentialTypes← sequentialTypes ∪ chain(ft)

end if
end for
return sequentialTypes

The chain operation here corresponds exactly to the ⊕ operation specified in Sec-
tion 4.2.1.

Throughout, we make use of the notions of desired labels, represented by the vari-
able DL and, for expressions only, immediate desired labels, represented by the vari-
able IDL. These variables are used to propagate constraints on the expected labels
of a term from other terms that are related to it. For example, the judgment TE-VAR

107

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF A POPLAR
COMPILER

(Section 4.2.7) types a variable when it is being read. In this judgment, the set of la-
bels associated with the variable is unconstrained, so this information must come from
somewhere else. This information would be held in IDL when the variable expression
is being typed. Depending on the term, we may either reject the typing attempt if the
IDL labels do not match what we can assign to the term being typed, accept it if they
do match, or pass on the IDL labels for establishment elsewhere.

IDL-labels that are not produced by a term itself are usually moved to the precond(LS)
set associated with its type. This means that the fragment as a whole will not be well
typed unless these labels eventually originate in a valid source. Similarly, DL is a map
X → L∗ that maps variables to the corresponding IDL set for that variable. This map
is updated and propagated throughout the typing of a method body. It can be thought
of as the precond(LS) set for the fragment that has been typed so far.

5.8.3 Selected checking routines
In principle, each typing judgment for statements and expressions presented in Sec-
tions 4.2.9 and 4.2.7 has its own variation of Algorithm 1. For the sake of brevity,
rather than present each variation of the algorithm here, we will describe some general
cases as well as the cases with unusual requirements. Instead of making calls to the
abstract checkTerm function presented in Algorithm 1 we will use the two routines:
checkStat(s,DL) and checkExpr(e, IDL,DL) for statements and expressions, re-
spectively. They are fundamentally the same as checkTerm. Each of these functions
will dispatch the checking to the appropriate case algorithm depending on the con-
crete statement or expression being typed, for instance checkIf , checkF ieldWrite,
checkV ar and so on. Below we show some of the special case routines that checkExpr
and checkStat can dispatch to. All routines return a set of valid typings on success,
and an empty set on failure.

Sequences are checked by Algorithm 2. We use the notation statements.head
to refer to the first statement in a list, and statements.tail to refer to the remaining
statements after the first has been removed.

Algorithm 2 Check sequence: checkSeq(statements,DL)

if size(statements) = 1 then
return checkStat(statements.head,DL)

end if
headTypes← checkStat(statements.head,DL)
tailTypes← checkSeq(statements.tail,DL)
for ft ∈ (headTypes× tailTypes) do
sequentialTypes← ∅
if ft is a sequentially consistent typing then
sequentialTypes← sequentialTypes ∪ chain(ft)

end if
end for
return sequentialTypes

Sequences where the first statement is a field write are checked by Algorithm 3.
This gives an example of the rewriting of ρ and LS that is carried out when an ex-
pression flows from one variable or field to another. First we check that the mutations
that have already been found for the rhs expression will be acceptable for the field it

108

5.8. POPLAR CHECKING STAGE

is flowing to, using the judgment ∆; Γ ` e!r ok (Section 4.2.6.) Then, for each ”tail
type” where the mutations could be accepted, we rewrite the corresponding LS and
ρ so that the label pre- and postconditions and mutations follow the expression to the
new name. This corresponds to the lf low and rflow functions in the formalisation
(Section 4.2.9). Sequences where the first statement is a variable write are checked in
almost exactly the same way as for the ones where the first statement is a field write,
save for trivial changes.

Algorithm 3 Check sequence with field write: checkSeqFW (statements,DL)

if size(statements) = 1 then
return checkStat(statements.head,DL)

end if
fieldWriteExpr ← statements.head
tailTypes← checkSeq(statements.tail,DL)
acceptableTailTypes← ∅
for tt ∈ tailTypes do

if acceptableMutation(fieldWriteExpr.target, tt.mutations) then
acceptableTailTypes← acceptableTailTypes ∪ tt

end if
end for
finalTypes← ∅
for att ∈ acceptableTailTypes do

LS← att.ls[fieldWriteExpr.rhs 7→ fieldWriteExpr.target]
ρ← att.ρ[fieldWriteExpr.rhs 7→ fieldWriteExpr.target]
finalTypes← finalTypes ∪ {(LS, ρ)}

end for
return finalTypes

If-statements are checked by Algorithm 4. The statement being checked has the
form if(cond) { branch1 } else { branch2 }. In this algorithm we make use of the
disjunctive composition operation since either branch can execute (see Section 4.2.1).
Any disjunctive combination of a valid type of branch1 and a valid type of branch2
can represent the if-statement together with the branch condition. The IDL set for the
branch condition is empty, since the if-statement is not permitted to have any particular
constraints on it.

Access to fields in resources are checked by Algorithm 5. This case is the main
reason why statements and expressions may have multiple types. Consider again
the example shown in Figure 5.6. If we are typing access to the field d in a con-
text where the main constraint is that d must have the property @unlocked, then
there are two possible sets of labels that the owning object may have in order for the
field to satisfy the constraints. This gives rise to multiple different ways that meth-
ods with such field accesses may be typed. In the algorithm shown here we use
the function fieldLabels(JT, field, labels) to give the labels of the field field in
the Java type JT when the owning object has the labels labels - a single set. The
function fieldLabels−1 is not a true inverse function, as it returns a set of sets -
all the possible combinations of labels that the owning object should have. For ex-
ample, considering again Figure 5.6, fieldLabels(House, d, {@unlocked}) returns
{{@closed}, {@open}}.

Method invocations are checked by Algorithm 6. Constructor invocations are very

109

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF A POPLAR
COMPILER

Algorithm 4 Check if-statement: checkIf(cond, branch1, branch2, DL)

condTypes← checkExpr(cond, ∅, DL)
b1types← checkSeq(branch1, DL)
b2types← checkSeq(branch2, DL)
paraTypes← ∅
for pair ∈ (b1types× b2types) do
paraTypes← paraTypes ∪ disjunctiveCompose(pair)

end for
sequentialTypes← ∅
for ft ∈ (condTypes× paraTypes) do

if ft is a sequentially consistent typing then
sequentialTypes← sequentialTypes ∪ chain(ft)

end if
end for
return sequentialTypes

Algorithm 5 Check resource field access: checkF ield(owner, field,DL, IDL)

ownerJT ← javaType(owner)
ownerDLs← fieldLabels−1(ownerJT, field, IDL))
ownerTypes← ∅
for ownerDL ∈ ownerDLs do
ownerTypes← ownerTypes ∪ checkExpr(owner, ownerDL,DL)

end for
for ownerType ∈ ownerTypes do
FL← fieldLabels(ownerJT, field, ownerType.labels)
accessTypes← accessTypes∪{(javaType(field),Unique , FL, ownerType.ls, ∅)}

end for
return accessTypes

110

5.8. POPLAR CHECKING STAGE

similar. This also shows how the formalisation given in Chapter 4, which, for sim-
plicity, only considers methods with a single argument, is extended to n arguments.
The invsub function from Section 4.2.6 is used to produce the version of the method
signature where the receiver and the arguments have been replaced with the concrete
expressions to be used.

Algorithm 6 Check method invocation: checkInvoke(receiver,m, params, IDL,DL)

boundSignature← invsub(m.poplarSignature, receiver, args)
{Check receiver}
if not acceptableMutation(receiver, boundSignature.ρ[receiver]) then

return ∅
end if
recTypes← checkExpr(receiver,DL[receiver], DL)
allCombinations← recTypes
{Check parameters}
for p ∈ params do

if not acceptableMutation(p, boundSignature.ρ[p]) then
return ∅

end if
argTypesp ← checkExpr(p,DL[p]∪boundSignature.preconditions[p], DL)

allCombinations← allCombinations× argTypesp
end for
finalTypes← ∅
for typing ∈ allCombinations do

if typing is sequentially consistent then
if chain(typing).labels ⊆ IDL then
finalTypes← finalTypes ∪ chain(typing)

end if
end if

end for
return finalTypes

Method bodies are checked by Algorithm 7. This is not a special case for checkExpr
or checkStat, but a top level case that is invoked on each method or constructor body
in each class that is checked. Here we make use of prior and posterior expanded signa-
tures (Section 4.2.10) as well as the mutation summary ρ of the surrounding method to
make sure that the method body has a valid typing. A pseudo-statement that contains
the method’s preconditions as effects is prepended to the body before it is checked.
This will produce the expected LS and no mutations when passed to checkStat.

5.8.4 Discussion
The checking routines that we have just shown exemplify all the different cases that can
be encountered during the Poplar type checking of a method. The remaining routines
are very similar to the ones shown here. For instance, sequencing with a variable write
is very similar to sequencing with a field write, and constructor invocation checking
is very similar to method invocation checking. Queries are typed as simple statements
that assume nothing about their environment and provide the labels specified in the

111

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF A POPLAR
COMPILER

Algorithm 7 Check method body: checkMethod(m)

priorExp← priorExpanded(m)
postExp← posteriorExpanded(m)
startCond← pseudo(priorExp.postconditions) {Pseudo statement}
types← checkSeq((startCond;m.body), postExp.preconditions)
if types 6= ∅ and ∃t ∈ types.(t.ρ ≺ m.ρ) then

return true
else

return false
end if

query. (We will return to the interaction between planning and Poplar method checking
in Section 5.9.3).

Resource fields and their owners, for which multiple typings may satisfy a given
constraint, give rise to most of the complexity in the Poplar type checking. The number
of types that may be found for a single method body is bounded by

O(nf)

where n is the maximum number of disjoint solution sets available for
fieldLabels−1(JT, field, labels), and f is the number of resource field reads in the
method body. The time and space required to type a single method body is bounded by

O(snf)

where s is the number of statements (recursively descending into constructs such as
if-statements) in the method body.

Unless field specifications are very complex, these should be acceptable constraints.
The time taken to type a class is linear in the number of methods it has. Poplar method
typing is decidable, since only a finite number of types need to be computed and tested.

5.9 Query Solving Stage

The query solving stage performs the integration procedure. For each method and
constructor declaration, it traverses the body, looking for integration queries. When a
query is found, partial order planning is used to look for a solution.

An important design decision was the point in the pipeline where the query solving
stage should be inserted. If queries are solved early, then the solutions can be output
in a simpler format where the representation is closer to the source code. On the other
hand, less information about the surrounding context and the available data is available
at an early stage. If queries are solved at a later stage, then a lot of information about the
context is available, but at a late stage each class has been transformed and processed by
several stages, and any code that we generate would have to conform to the invariants
expected by the compiler at that point. We chose to execute our additional stages
after JKit’s type checking stage. At this point types have been resolved, checked and
propagated to all expressions. When we solve queries we have access to poplar types,
resolved labels and uniqueness kinds, since these stages are performed first. After
we have generated solutions, we simply do a second, slightly weakened pass of type

112

5.9. QUERY SOLVING STAGE

propagation and scope resolution, so that the generated code will appear valid to the
later compiler stages.

Methods that contain queries may be used to satisfy queries in other methods. How-
ever, we can clearly not allow any circular dependence here, since otherwise an infinite
loop would result. We solve this by initially marking each query-containing method as
unfinished, and marking it as finished once all queries in it have been solved. Only fin-
ished methods can be used to solve other queries. This constraint gives rise to a search
tree: the order in which we finish methods is significant. If we fail to find solutions for
all queries while trying to solve a class’ methods in a certain order, we backtrack and
attempt a different order.

Note that in theory, more solutions could be found if all orderings of all queries
in all the classes being compiled were considered simultaneously. However, currently
Jardine must solve the queries in each class in isolation. This means that there cannot
be mutual interdependence between queries and methods in classes A and B. Queries
in class A can use members from class B in their solutions, but then queries in class B
cannot simultaneously use members from class A.

When a satisfactory solution has been found for each query, each solution is con-
verted into a series of JIL statements, The query is removed from the method body, and
the solution’s JIL statements are inserted in the same location.

Algorithm 8 Solve all queries in a class

source← actionSource(class)
for method ∈ class do

for statement ∈ method do
if statement is query then
solution← solve(query, source)
method ← method[query → solution] {Replace the query with its solu-
tion.}

end if
end for

end for

5.9.1 Planning

The AI planning problem is the problem of identifying a sequence of actions in some
domain that transform an initial state into a goal state. There is a large amount of
literature on AI planning. Very broadly, AI planning algorithms may be divided into
plan space search algorithms and state space search algorithms. The former explore a
state of all possible plans; the latter explore a space of all possible states. We discuss
related work in the area of planning in section 7.1.3.

In principle, any planning or search algorithm can be used to find solutions in Jar-
dine. The choice of algorithm and heuristics is mainly a matter of performance. We
have used Partial order planning (POP), a plan space search algorithm, as the main
search algorithm and found it to produce good performance. It is also relatively easy
for humans to understand and reason about.

We use a number of plans and classes to represent plans and actions. The following
is a list of the most important classes.

113

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF A POPLAR
COMPILER

Action Represents an action template, i.e. a single Java statement. FieldAction repre-
sents field accesses. MethodAction represents method or constructor invocation.
Each action describes its preconditions and effects in general terms, which are
made more specific (bound) when the action is inserted into a plan and connected
to other actions. When we insert an action into a plan, we instantiate it, giving it
a unique id number, to distinguish it from potential additional uses of the same
action in the plan.

Label Represents a label, i.e. a property or a tag. The Label class also describes the
resources that this label is sensitive to, if it is a property, and its declaring class.

Subject Represents a variable. Variables can either be referenced by name using the
LocalVariable class, or by their role in a method signature (Receiver, Param-
eter or Result).

VarCondition A VarCondition is the basic unit of state in the plan representation.
It is a triplet (subject, type, label) which indicates that the given subject is a
variable of the given type and has the given label. Note that a VarCondition can
satisfy both a produce query (constraining type and label) and a transform query
(constraining subject and label).

CausalLink The CausalLink class is used both to represent open preconditions, which
represent unsatisfied conditions in plans, and actual causal links, which link ef-
fects of preceding actions to satisfied (closed) preconditions of successor actions.

Plan The main plan representation class. In addition to containing actions and causal
links, it contains various auxiliary data, such as ordering constraints beyond
causal links (which are implicitly ordering constraints) and variable binding info
(to be described below).

The following auxiliary classes are also important.

BoundVariableInfo For a given action and subject pair, BoundVariableInfo tracks
information about the subject’s binding state. This includes whether the variable
is bound, what its name is, and whether it was generated by Jardine or supplied
in the query context. Plans contain maps that map (action, subject) pairs to
BoundVariableInfo instances. Because the binding information is contained in
plans rather than in actions, actions can be shared between plans that contain
the same action in different binding states, leading to simpler algorithms and
improved memory efficiency.

ActionSource ActionSource classes supply Action templates to the planner. Cur-
rently there are two main action sources being used: the JILActionSource,
which supplies actions from (previously compiled) JIL classes, and the TreeAc-
tionSource, which supplies actions from the AST class that is currently being
compiled. In addition, plans can also act as action sources by themselves. When
they do, they simply supply the actions that are already present in the plan.

The search algorithm presented here is not novel, but a straightforward implemen-
tation of the partial order planning algorithm [40]. Algorithm 9 is the main search
algorithm. It makes use of the auxiliary Algorithm 10 and Algorithm 11.

It should be noted that plans is always kept ordered according to the number of ac-
tions in the plans, with small plans first. This is our main search heuristic. It effectively
ensures that plans able to satisfy a query with a smaller number of separate actions are
preferred over larger plans.

114

5.9. QUERY SOLVING STAGE

Algorithm 9 Main plan search algorithm

start← makeAction(assumptions)
goal← makeAction(goals)
plans← makeP lan(start, goal)
while plans 6= ∅ and plans.first.openPreconditions 6= ∅ do
planc ← plans.first
plans = plans \ planc
plans← plans ∪ successors(planc)

end while
if plans.first.openPreconditions = ∅ then

return Success(plans.first)
else

return Failure
end if

Algorithm 10 Successor construction procedure successors

cond← pickCondition(heuristic, plan)
newActions← actionsFor(aSource, cond)
oldActions← actionsFor(plan, cond) {Pick suitable actions already in the plan}

newPlans← ∅
for all a ∈ newActions ∪ oldActions do
planr ← Insert a into plan before searchAction
newP lans← newPlans ∪ resolveConflicts(planr)

end for
return newPlans

Algorithm 11 Conflict resolution procedure resolveConflicts

resolutions← ∅
for all (action, cLink) ∈ conflicts(plan) do
r1 ← new plan with action before cLink if possible
r2 ← new plan with action after cLink if possible
resolutions← resolutions ∪ {r1, r2}

end for
return resolutions

115

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF A POPLAR
COMPILER

5.9.2 Decidability of planning
The plan search procedure carried out by Jardine is decidable. This follows from
the fact that we have a progress measure: with each new candidate plan, we can tell
whether or not it has made progress. Progress is tracked in terms of the types, labels
and uniquenesses of the open preconditions of plans that have previously been seen in
a plan search problem. A plan p2 is an improvement of a previous plan p1 if at least
one of the following conditions is true:

• The preconditions of p1 contain a variable that does not exist in the preconditions
of p2.

• For some variable, the preconditions of p1 contain labels that are a superset of
the corresponding labels in p2.

• Some variable is associated with a more permissive uniqueness kind in p2 than
in p1. For instance, Unique is more permissive than Normal since it can be
used in more contexts. The ordering is Uniquer ≺ Unique ≺ Normal ≺
Maintainr ≺ Maintain .

We only retain candidate plans that have made progress compared with the previous
best progress state. It is possible to track multiple ”progress branches” simultaneously,
remembering the best achieved state of each one. It is only when a new candidate is
equal to or weaker than some other best progress state that it is discarded. In this way,
for a given set of available actions (members in classes on the classpath) and a given
query in a given context, all possibility of further progress is eventually exhausted and
the plan search stops. Thus, our planning problem is decidable.

5.9.3 Ensuring the safety of solutions in a context
It is necessary to ensure that the solutions to queries do not interfere with Poplar types
that have previously been found. Consider the following example.

1 class C {
2 resource r { properties @a, @b;
3 void m() this: ++@a. { ... }
4 void n() this: ++@b. { ... }
5 }
6 void q() this: +@a, +@b. {
7 m();
8 #transform(this, @b);
9 }

10 }

The method m establishes the property @a, but erases @b. The method n erases
@a and establishes @b. Naively, a solver might attempt to satisfy the query in q by
using the method n. However, this is not correct as such a method invocation would
destroy the label @a, which is needed to satisfy the overall signature of the method.
We address this problem by propagating information from the Poplar type checking
stage to the query solving stage. When a valid Poplar typing for a method has been
found, we track all label flows that flow across a query, that is, from the statements
before it to the statements after it (considering the start and end of the method to be
pseudo-statements). When we solve such a query, we first set up these label flows as
predefined causal links, which may not be broken. This guarantees that the solutions
will be correct with respect to such cross-query label flows. Thus, in the example given
here, there is no valid solution, and this fact can correctly be identified.

116

5.10. A FUTURE EXTENSION: VERIFICATION OF INTEGRATION LINKS

5.10 A Future Extension: Verification of Integra-
tion Links

We mentioned in Section 5.2 that an ideal Poplar compiler would perform three tasks:
checking of method contracts, construction of integration links, and verification of inte-
gration links. Jardine, the compiler described in this chapter, only performs the former
two tasks, but it would be straightforward to extend it to check integration links as well.

When a Java program causes the JVM to load a class dynamically, the class that
is actually loaded may be a future version, which could be different from the version
that the program was compiled against. However, the JVM will check the class as
it is being loaded to verify that it has the expected declarations and that they have
the correct signatures, in addition to doing bytecode verification (CITE). This basic
compatibility check can be thought of as a form of binary compatibility. If Poplar
type checking is a stricter form of Java type checking, then verification of integration
links would resemble a stricter form of binary compatibility. The purpose of such
verification would be to identify when a method or field contract has evolved to a
future incompatible version, for instance by weakening its postcondition.

Standard Java class files store information in attributes. Java compilers are per-
mitted to define new such attributes [72]; unknown attributes will not interfere with
existing compilers. This facility can be used in a natural way to aid Poplar. At each in-
tegration (query) site, the Poplar compiler should store, in new attributes in the relevant
class files, the following information:

• The query itself.

• Minimal assumptions about the method contracts used as part of the solution to
the query.

In service components, which provide the declarations that can form part of solutions
to queries, the Poplar compiler should store, in new attributes in the relevant class files,
the full contracts of all methods that are being made available to Poplar. With this in-
formation in place, it is easy to check whether the exported contracts in a future version
of a class file match the expectations declared by client classes. Such a check would
amount to checking the valid subtyping and overriding relation specified in Chapter 4.

Ideally, this check should be performed not by a static tool but by the JVM at
runtime. It should be straightforward to modify a JVM to carry out this additional
check as part of classloading; however, an even simpler way of achieving the same
result might be to use a custom classloader [10, p. 438]. Such a classloader modifies
the JVM’s standard mechanism for loading classes and may perform additional checks
before permitting a class to be loaded in the usual way.

5.11 Conclusion

In this chapter, we discussed the design and implementation of Jardine, a Poplar com-
piler. Jardine is based on JKit, an existing Java compiler framework. We established
three functions that a Poplar compiler will ideally perform: query solving (integration),
Poplar type checking and integration link verification. We described our implementa-
tion of the former two functions, and showed how the third may be implemented as a
future extension.

117

CHAPTER 5. THE DESIGN AND IMPLEMENTATION OF A POPLAR
COMPILER

Jardine retains the Java type checking system from JKit with slight modifications,
and so it remains for Jardine to verify uniqueness of variables, verify label flow, and
perform query solving. These problems are solved in separate stages that have been
added to the pipeline.

The main source of complexity in Poplar checking is the possibility of having mul-
tiple valid types of fields and owners of fields with respect to the constraints on the
fields themselves. Unless the methods in question are not very large, and unless the
specifications of the fields in question are extremely complicated, we do not expect
that this will pose a significant problem. Poplar checking is decidable, since only a
finite number of potential types for each method body must be constructed and tested.

Query solving is the main procedure that performs our automatic integration. In Jar-
dine it is based on partial order planning. Thanks to a measure of established progress,
query solving is decidable. Information propagation from the Poplar checking stage to
the query solving stage guarantees that the previously established Poplar types will not
be invalidated by any query solutions.

In the following chapter, we carry out a case study by applying Jardine to an exist-
ing software system.

118

6
Evaluation and Discussion

In this section we apply Poplar to the problem of refactoring a large real-world software
library. Our purpose is to verify that Poplar can be used in practice and yield useful
results. In this study, we cannot claim to be exhaustive. For a Java software system,
there is rarely such a thing as a final, perfect design, and refactoring is often a matter of
taste. Nevertheless there is some agreement on good practice and bad practice. Fowler
et al discuss the subject at length [34]. In addition to giving a list of commonly used
refactorings, they identify what they term bad code smells - patterns that indicate that
there might be a need for a particular refactoring. However, what is a bad smell in one
design, going against the grain, might be a sign of success in another where it goes
with the grain. We have selected some refactorings that are recommended by Fowler
and that we believe could realistically occur, if the component under study were to
be redesigned. We also discuss the theoretical application of Poplar to all of Fowler’s
refactorings in Section 6.2.

6.1 Case Study: Refactoring JFreeChart

As the subject of our study we have chosen the open source charting library
JFreeChart [59]. This is a relatively large library of 583 top-level classes and more
than 216 000 lines of source code (version 1.0.13). As of 28 September 2011, it had
been downloaded more than 430 000 times. It is also an interesting library to study
for the reason that in order to use its functionalities fully, it is sometimes necessary to
create instances of multiple different classes and make them interact; the core API is
not confined to a single class.

The experiments described in this section have been run on a Mac Pro with a 2.8
GHz Quad-Core Intel Xeon CPU using Mac OS X 10.6.8. The runtime environment
consisted of Oracle Java 1.6.0 26 and Scala 2.9.0.1.

First, we will show a simple use case for JFreeChart, and then incrementally evolve
the library through a series of refactorings. We will take advantage of Poplar to make
the client remain compatible with the evolved library component. This demonstrates
the descriptive capabilities of the Poplar language as well as Jardine’s ability to gener-
ate solutions. After each refactoring we will generate a solution and generate a diagram
that represents it, as well as show the generated code. The diagrams are automatically
generated by Jardine in the GraphViz format but have been adjusted manually for lay-
out and readability.

119

CHAPTER 6. EVALUATION AND DISCUSSION

Figure 6.1: Chart window produced by ChartClient

6.1.1 A JFreeChart application
Throughout our study we will use a simple program that makes use of JFreeChart to
display data in a chart. This chart is then displayed in a standard Swing JFrame. We
developed the example application specifically for this study, but we believe that it
represents a typical nontrivial usage of the JFreeChart library. Our application has the
following features:

• Selectable data source - a JDBC database or CSV data.

• Support for five different chart types - Pie chart, Line chart, Bar chart, 3D Bar
chart and XY bar chart.

• Zoom buttons.

• Configurable colours.

Thus, our application is interacting with both the data model, the chart creation/instanti-
ation process, and the layout/theme parts of JFreeChart. A screenshot of the application
is shown in Figure 6.1.

We will now describe our chart application in detail, since it is the starting point
for a number of refactorings that we will carry out. In order to do this, we must first
describe the relevant parts of the JFreeChart API. We give a simplified class diagram
in Figure 6.2. With respect to this class hierarchy, we may note the following.

Multiple plot types. The JFreeChart class is the central chart class, but it delegates
most of the actual drawing to an object of type Plot. The Plot class has mul-
tiple subclasses, which are different depending on which chart type has been
requested. The subclasses we have included here are CategoryPlot, PiePlot
and XYPlot, although more exist.

120

6.1. CASE STUDY: REFACTORING JFREECHART

XYSeriesCollection

AbstractIntervalXYDataset

Dataset

AbstractDataset

AbstractSeriesDataset

AbstractXYDataset

JFreeChart

ChartFactory

ChartTheme

CategoryDataset

DefaultCategoryDataset

PieDataset

DefaultPieDataset

ChartPanel

JPanel

JComponent

Plot

XYPlot

PiePlot

CategoryPlot

JDBCCategoryDataset

JDBCPieDataset

JDBCXYDataset

XYDataset

SeriesDataset

StandardChartTheme

Figure 6.2: Simplified JFreeChart class diagram. Circled arrows denote delegation, normal
arrows inheritance and implementation.

Multiple data set types. The Dataset implementations correspond generally to the
various plot types, so that XYPlot needs an XYDataset, CategoryPlot needs
a CategoryDataset and so on. A range of dataset classes are available for
each plot type. We may also note the JDBC reading dataset classes – JDBCXY-
Dataset, and so on – which have built-in functionality for database access.

Our application supports five chart types. For XYBarChart, an XYDataset is needed.
For PieChart, a PieDataset is needed. The other three chart types are LineChart,
BarChart and 3DBarChart. These three all need a CategoryDataset. Note that the
different chart types do not each have their own class. All charts are implemented
by the JFreeChart class, although the Plot and Dataset objects it contain will be of
different types, depending on which kind of chart is created.

Most of the source code of our chart application is given on the following pages.
We have omitted uninteresting, static code, such as GUI setup routines.

121

CHAPTER 6. EVALUATION AND DISCUSSION

1 //Source code of our JFreeChart client application.
2 public class ConfigPanel implements ActionListener {
3 JFreeChart chart:(any);
4 Color bgPaint:(tBackgroundPaint) = Color.white;
5 Color legendBgPaint:(tLgBackgroundPaint) = Color.gray;
6 //Other GUI fields omitted.
7
8 public ConfigPanel() result: ++any. {
9 //GUI setup code omitted

10 }
11 public void actionPerformed(ActionEvent e) mutates any(JFreeChart).

ext[Plot].zoomState, this.data:
12 this: -@notReady. {
13 if (e.getSource() == drawButton) {
14 redrawChart();
15 } else if (e.getSource() == bgColorButton) {
16 bgPaint = JColorChooser.showDialog(panel, "Background color",

bgPaint);
17 } else if (e.getSource() == legendBgColorButton) {
18 legendBgPaint = JColorChooser.showDialog(panel, "Legend

background color", legendBgPaint);
19 } else if (e.getSource() == zoomInButton) {
20 if (chart != null) { zoomIn(); }
21 } //etc. for zoomOut and zoomReset
22 }
23
24 void zoomIn() {
25 double zf:(zoomDelta) = 0.9;
26 JFreeChart jc = #produce(JFreeChart, @zoomed);
27 }
28 void zoomOut() {
29 double zf:(zoomDelta) = 1.1;
30 JFreeChart jc = #produce(JFreeChart, @zoomed);
31 }
32 void zoomReset() {
33 double zf:(zoomDelta) = 0;
34 JFreeChart jc = #produce(JFreeChart, @zoomed);
35 }
36
37 void redrawChart() mutates this.data: this: -@notReady. {
38 JFreeChart newChart = makeChart();
39
40 if (chartPanel != null) {
41 panel.remove(chartPanel);
42 }
43 chartPanel = makeChartPanel(newChart);
44 panel.add(chartPanel, BorderLayout.CENTER);
45 panel.validate();
46 chart = newChart;
47 }
48
49 JFreeChart makePieChart() this: @inited. {
50 JFreeChart ch = #produce(JFreeChart, tPieChart, themed);
51 return ch;
52 }
53 JFreeChart makeLineChart() this: @inited. {
54 JFreeChart ch = #produce(JFreeChart, tLineChart, themed);
55 return ch;
56 }
57 JFreeChart makeBarChart() this: @inited. {
58 JFreeChart ch = #produce(JFreeChart, t2D, tBarChart, themed);
59 return ch;

122

6.1. CASE STUDY: REFACTORING JFREECHART

60 }
61 JFreeChart makeXYBarChart() this: @inited. {
62 JFreeChart ch = #produce(JFreeChart, tXYBarChart, themed);
63 return ch;
64 }
65 JFreeChart makeBar3DChart() this:@inited. {
66 JFreeChart ch = #produce(JFreeChart, t3D, tBarChart, themed);
67 return ch;
68 }
69
70 resource data {
71 properties @notReady, @inited;
72 DefaultCategoryDataset myCategoryData:((@inited) -> (@populated));
73 DefaultPieDataset myPieData:((@inited) -> (@populated));
74 XYSeriesCollection myXYData:((@inited) -> (@populated));
75
76 String url:((any) -> (jdbcUrl)) = "jdbc:sqlite:data.db";
77 String driver:((any) -> (jdbcDriver)) = "org.sqlite.JDBC";
78 String user:((any) -> (jdbcUser)) = "";
79 String pass:((any) -> (jdbcPasswd)) = "";
80 String query:((any) -> (sqlQuery)) = "select p_id, v_indegree,

v_outdegree, v_degree from versions where g_id=1;";
81 }
82
83 private JFreeChart makeChart() mutates this.data:
84 this: -@notReady, +@inited. {
85 makeData();
86 String ctype = (String) typeCombo.getSelectedItem();
87 if (ctype == "Line") {
88 this.chart = makeLineChart();
89 } else if (ctype == "Bar") {
90 this.chart = makeBarChart();
91 } else if (ctype == "XYBar") {
92 this.chart = makeXYBarChart();
93 } else if (ctype == "Bar3D") {
94 this.chart = makeBar3DChart();
95 } else if (ctype == "Pie") {
96 this.chart = makePieChart();
97 }
98 return chart;
99 }

100 void makeData() mutates this.data:
101 this: -@notReady, ++@inited. {
102 makeCategoryData();
103 makePieData();
104 makeXYData();
105 }
106 void makeCategoryData() {
107 String st = getSourceType();
108 if (st == "CSV") {
109 myCategoryData = categoryCSV();
110 } else {
111 myCategoryData = categoryJDBC();
112 }
113 }
114 //Two similar methods makePieData() and makeXYData() follow
115
116 DefaultCategoryDataset categoryCSV() this: any. {
117 FileReader fr:(tCSVreader) = new FileReader("data.csv");
118 DefaultCategoryDataset r = #produce(DefaultCategoryDataset,

@populated);
119 return r;

123

CHAPTER 6. EVALUATION AND DISCUSSION

120 }
121 DefaultPieDataset pieCSV() this: any. {
122 FileReader fr:(tCSVreader) = new FileReader("data.csv");
123 DefaultPieDataset r = #produce(DefaultPieDataset, @populated);
124 return r;
125 }
126 XYSeriesCollection XYCSV() this: any. {
127 FileReader fr:(tCSVreader) = new FileReader("data.csv");
128 XYSeriesCollection r = #produce(XYSeriesCollection, @populated);
129 return r;
130 }
131 DefaultCategoryDataset categoryJDBC() this: any. {
132 DefaultCategoryDataset r = #produce(DefaultCategoryDataset,

@populated);
133 return r;
134 }
135 DefaultPieDataset pieJDBC() this: any. {
136 DefaultPieDataset r = #produce(DefaultPieDataset, @populated);
137 return r;
138 }
139 XYSeriesCollection XYJDBC() this: any. {
140 XYSeriesCollection r = #produce(XYSeriesCollection, @populated);
141 return r;
142 }
143 }
144
145 //For each chart type, we have a "Maker" class, similar to this one.
146 public class LineChartMaker {
147 public LineChartMaker() result: ++any. {}
148 public JFreeChart useFactoryIndirect(DefaultCategoryDataset data)
149 data:@populated; result: +tLineChart, +t2D. {
150 String title:(tChartTitle) = "Frequency";
151 PlotOrientation po:(tPlotOrientation) = PlotOrientation.VERTICAL;
152 String f:(tXAxisLabel, tCategoryAxisLabel) = "Alpha";
153 String a:(tYAxisLabel, tValueAxisLabel) = "Beta";
154 boolean da:(tWithDateAxis) = false;
155 boolean gu:(tGenUrls) = false;
156 boolean tt:(tGenTooltips) = true;
157 boolean lr:(tReqLegend) = true;
158 JFreeChart c = #produce(JFreeChart, tLineChart, t2D);
159 return c;
160 }
161 }

It can be seen that the class ConfigPanel has 14 different queries. The 3 first queries
are in zoomIn, zoomOut and zoomReset. The following 5 are in methods that make
charts - makePieChart and so on. Finally, there are 6 queries that make datasets in
categoryCSV and the following methods. We refer to these three groups of queries as
the zooming queries, the chart creators and the dataset creators. Before we describe
our refactorings, we will describe the initial solutions to these various queries. As we
perform the refactorings, the solutions will change, but no manual intervention will be
needed in the client application.

6.1.2 Initial service API annotations
We now give the initial Poplar annotations made to the JFreeChart API. Over time these
will change to reflect refactorings, but the client side annotations will remain constant.

124

6.1. CASE STUDY: REFACTORING JFREECHART

1 public abstract class ChartFactory {
2 //For each chart type, the corresponding factory method has been

annotated with labels in a similar fashion to this one.
3 public static JFreeChart createPieChart(String title,
4 DefaultPieDataset dataset,
5 boolean legend,
6 boolean tooltips,
7 boolean urls)
8 title: tChartTitle;
9 dataset: @populated;

10 legend: tReqLegend;
11 tooltips:tGenTooltips;
12 urls: tGenUrls;
13 result: ++tPieChart, ++t2D. { ... }
14 //...
15 }
16
17 public class StandardChartTheme implements ChartTheme, Cloneable,
18 PublicCloneable, Serializable {
19
20 composite @configured=(@rbpSet, @lbpSet);
21
22 resource rBackgroundPaint {
23 properties @rbpSet;
24 private transient Paint chartBackgroundPaint;
25
26 public void setChartBackgroundPaint(Paint paint) paint:

tBackgroundPaint; this: ++@rbpSet. {
27 if (paint == null) {
28 throw new IllegalArgumentException("Null ’paint’ argument.");
29 }
30 this.chartBackgroundPaint = paint;
31 }
32 }
33 //Similar resource and property for setLegendBackgroundPaint, @lbpSet
34 //...
35 }
36
37 public class CSV {
38 public DefaultCategoryDataset readCategoryDataset(Reader in) throws

IOException
39 in: tCSVreader; result: +@populated. { ... }
40 //...
41 }
42
43 public class DefaultCategoryDataset extends AbstractDataset {
44 resource data {
45 properties @populated, @empty;
46 /** A storage structure for the data. */
47 private DefaultKeyedValues2D data;
48 }
49 //...
50 }
51
52 public class JDBCCategoryDataset extends DefaultCategoryDataset {
53 public JDBCCategoryDataset(String url, String driverName,
54 String user, String passwd, String query)
55 throws ClassNotFoundException, SQLException
56 mutates this.data:
57 url: jdbcUrl; driverName: jdbcDriver; user: jdbcUser; passwd:

jdbcPasswd;
58 query: sqlQuery; result: +@populated. { ... }

125

CHAPTER 6. EVALUATION AND DISCUSSION

59
60 public void executeQuery(Connection con, String query) throws

SQLException
61 mutates this.data: this: ++@populated. { ... }
62 //...
63 }
64 //Similar annotations for JDBCPieDataset, JDBCXYDataset
65
66 public class JFreeChart {
67 public Plot getPlot() result: ++any. {
68 return this.plot;
69 }
70 //...
71 }
72
73 public class Plot {
74 tags(double) zoomDelta;
75
76 //Using an external resource to provide a property for JFreeChart in

Plot
77 resource[JFreeChart] zoomState {
78 properties @zoomed;
79
80 public void zoom(double percent, JFreeChart chart) percent:

zoomDelta; chart: ++@zoomed. {
81 zoom(percent);
82 }
83 public void zoom(double percent) { ... }
84 }
85 //...
86 }

6.1.3 Initial solutions

We have now given the initial annotations both in the client application and in the
JFreeChart library. We can now show the initial solutions to the client’s queries.

How to read the diagrams

Jardine generates compiled Java code and GraphViz diagrams that describe the gener-
ated solutions. We give both the diagrams and the corresponding generated code for
each solution that we describe. In the diagrams, blue boxes are static methods, red
boxes are nonstatic methods, and ellipses are dummy actions or fields. Recv identifies
the receiver of a method, and res identifies the return value. Numbers 0, . . . n−1 iden-
tify each argument of a method. Black arrows connect input and output variables. Each
such arrow is labelled with a triplet (name, type, label) that describes the condition that
matched. Black arrows also imply an ordering of actions. Red arrows are orderings of
actions without any corresponding condition.

Zooming

We give the solution to zoomIn in Figure 6.3. The other two queries have similar
solutions.

126

6.1. CASE STUDY: REFACTORING JFREECHART

recv 0 1

zoom[4]

res recv 0 1

finish(dummy)[3]

start(dummy)[2]

recv

getPlot[5]

res recv

Field chart[23]

(gen_0,JFreeChart,@zoomed)

(zf,double,zoomDelta)

(this,ConfigPanel,AnyLabel())

(gen_1,Plot,AnyLabel())

(gen_0,JFreeChart,AnyLabel())

(gen_0,JFreeChart,AnyLabel())

1 JFreeChart gen_0 = this.chart;
2 Plot gen_1 = gen_0.getChart();
3 gen_1.zoom(zf);

Figure 6.3: Solution to the zoomIn query.

Chart creators

We give the solution to the makeLineChart query in Figure 6.4. It makes use of the
class LineChartMaker, the solution of whose query is shown in Figure 6.5. The other
chart types have similar solutions.

Dataset creators

We give the solutions of categoryCSV and categoryJDBC in Figure 6.6 and Fig-
ure 6.7, respectively. The other dataset types have similar solutions.

127

CHAPTER 6. EVALUATION AND DISCUSSION

finish(dummy)[3]

start(dummy)[2]

Field bgPaint[7]

LineChartMaker[16]

res

recv 0

apply[4]

res recv 0

Field legendBgPaint[9]

recv 0

setLegendBackgroundPaint[5]

res recv 0

recv 0

useFactoryIndirect[12]

res recv 0

recv 0

setChartBackgroundPaint[6]

res recv 0

createTheme[23]

res
Field myCategoryData[32]

(this,ConfigPanel,AnyLabel())

(this,ConfigPanel,Unresolved@inited)

(this,ConfigPanel,AnyLabel())

(gen_1,Paint,tBackgroundPaint)

(gen_6,LineChartMaker,AnyLabel())

(gen_0,JFreeChart,themed)

(gen_3,Paint,tLgBackgroundPaint)

(gen_9,StandardChartTheme,@lbpSet)

(gen_0,JFreeChart,AnyLabel())

(gen_0,JFreeChart,tLineChart)

(gen_9,StandardChartTheme,AnyLabel())

(gen_9,StandardChartTheme,@rbpSet)

(gen_9,StandardChartTheme,AnyLabel()) (gen_13,DefaultCategoryDataset,@populated)

1 StandardChartTheme gen_9 = ChartFactory.createTheme();
2 Paint gen_1 = this.bgPaint;
3 Paint gen_3 = this.legendBgPaint;
4 LineChartMaker gen_6 = new LineChartMaker();
5 DefaultCategoryDataset gen_13 = this.myCategoryData;
6 gen_9.setBackgroundPaint(gen_1);
7 gen_9.setLegendBackgroundPaint(gen_3);
8 JFreeChart gen_0 = gen_6.useFactoryIndirect(gen_13);
9 gen_9.apply(gen_0);

Figure 6.4: Solution to the makeLineChart query.

128

6.1. CASE STUDY: REFACTORING JFREECHART

start(dummy)[2]

finish(dummy)[3]

0 1 2 3 4 5 6 7

createLineChart[4]

res 0 1 2 3 4 5 6 7

(data,DefaultCategoryDataset,@populated)

(tt,boolean,tGenTooltips)(title,String,tChartTitle)

(f,String,tCategoryAxisLabel)

(gu,boolean,tGenUrls)

(a,String,tValueAxisLabel) (po,PlotOrientation,tPlotOrientation)
(lr,boolean,tReqLegend)

(gen_0,JFreeChart,tLineChart)

(gen_0,JFreeChart,t2D)

1 JFreeChart gen_0 = ChartFactory.createLineChart(title, f, a, data, po,
lr, tt, gu);

Figure 6.5: Solution to the LineChartMaker query.

start(dummy)[2]

finish(dummy)[3]

recv 0

readCategoryDataset[4]

res recv 0

CSV[16]

res
(fr,Reader,tCSVreader)

(gen_0,DefaultCategoryDataset,@populated)

(gen_1,CSV,AnyLabel())

1 CSV gen_1 = new CSV();
2 gen_1.readCategoryDataset(fr);

Figure 6.6: Solution to the categoryCSV query.

129

CHAPTER 6. EVALUATION AND DISCUSSION

Field query[22]

finish(dummy)[3]

Field url[20]

0 1 2 3 4

JDBCCategoryDataset[7]

res 0 1 2 3 4

Field pass[18]Field driver[24] Field user[16]

start(dummy)[2]

(gen_7,String,sqlQuery)
(gen_5,String,jdbcUrl)

(gen_0,DefaultCategoryDataset,@populated)

(gen_3,String,jdbcPasswd)(gen_9,String,jdbcDriver)

(gen_1,String,jdbcUser)

(this,ConfigPanel,AnyLabel())

(this,ConfigPanel,AnyLabel())

(this,ConfigPanel,AnyLabel())

(this,ConfigPanel,AnyLabel())

(this,ConfigPanel,AnyLabel())

1 String gen_5 = this.url;
2 String gen_9 = this.driver;
3 String gen_1 = this.user;
4 String gen_3 = this.pass;
5 String gen_7 = this.query;
6 JDBCCategoryDataset gen_0 = new JDBCCategoryDataset(gen_5, gen_9, gen_1

, gen_3, gen_7);

Figure 6.7: Solution to the categoryJDBC query.

130

6.1. CASE STUDY: REFACTORING JFREECHART

6.1.3 Initial
Version

6.1.5 Parameter
Object

6.1.6
Setters

6.1.7 Split
ChartTheme

6.1.8 Hide
Delegate

6.1.9 Data
Readers

Figure 6.8: Refactorings to be carried out. The numbers reference sections in this chapter.

6.1.4 Refactorings to be carried out
From this point onwards, we will gradually refactor the JFreeChart library, which
will automatically push changes into the client application we have just shown. The
roadmap for our refactorings is given in Figure 6.8. We start from the initial version
of the chart application, which we have just described. In Section 6.1.5, we introduce
a parameter object that replaces many of the parameters taken by the ChartFactory
methods. In Section 6.1.6 and Section Z we modify the ChartFactory with setter
methods, and then show how to use a local overriding method to influence the outcome
of the solution search. We then go back to the initial application and split the Stan-
dardChartTheme class into several subclasses, which we describe in Section 6.1.7.
This affects how visual styles are applied to the charts. In Section 6.1.8 we hide the
chart’s Plot delegate by adding some forwarding methods to the JFreeChart itself.
This affects zooming. Finally, in Section 6.1.9, we refactor the Dataset hierarchy,
introducing the concept of data readers. This refactoring separates the JDBC reading
functionality from the dataset hierarchy completely, introducing instead a new delegate
hierarchy.

131

CHAPTER 6. EVALUATION AND DISCUSSION

6.1.5 Introducing a parameter object
In Figure 6.5, we may note that the factory method createLineChart takes a large
number of arguments. In fact, most of the factory methods in ChartFactory take at
least 8 arguments, and many of them have arguments in common. This is one of the
situations in which Fowler suggests [34, p. 295] that the refactoring known as Intro-
duce parameter object may be used. It may be desirable to introduce a new class that
wraps some of the common parameters of these methods, and then pass an instance of
that class instead of passing each parameter separately to each method. With Poplar,
and using the kind of integration query just shown, we may carry out such a change
without changing API clients at all. First, we introduce a class called ChartParame-
ters, shown in figure ??. We also modify the ChartFactory API accordingly. Here,
the tag populated indicates that the members of the ChartParameters object have
been filled out. Since the tag is immutable, we cannot track here whether the param-
eter object’s fields are overwritten after they have been initialised. We could do so if
we put these fields in a resource and instead used a property, a technique that we will
demonstrate later.

1 public class ChartParameters {
2
3 tag(ChartParameters) populated;
4
5 String chartTitle;
6 boolean withDateAxis, urls, tooltips, legend;
7
8 public ChartParameters(String chartTitle, boolean withDateAxis,
9 boolean urls, boolean tooltips, boolean legend)

10 result: ++populated; chartTitle: tChartTitle;
11 withDateAxis: tWithDateAxis; urls: tGenUrls;
12 tooltips: tGenTooltips; legend: tReqLegend. {
13 this.chartTitle = chartTitle; this.withDateAxis = withDateAxis;
14 this.urls = urls; this.tooltips = tooltips;
15 this.legend = legend;
16
17 }
18 }
19
20 public class ChartFactory {
21 //...
22 public static JFreeChart createLineChart(ChartParameters cp,
23 String categoryAxisLabel, String valueAxisLabel,
24 DefaultCategoryDataset dataset, PlotOrientation orientation)
25 cp: populated; categoryAxisLabel: tCategoryAxisLabel;
26 valueAxisLabel: tValueAxisLabel; dataset: @populated;
27 orientation: tPlotOrientation;
28 result: ++tLineChart, ++t2D. {...}
29
30 //...
31 }

We add ChartParameters to the source path and invoke Jardine again, using the
unchanged client code from Figure ??. The resulting solution is shown in Figure ??.
We are at liberty to divide parameters between the createXYBarChart and the Chart-
Parameters object any way we like. The only condition that must be satisfied for an
integration to be successful is that there should exist a conflict-free path, obtained by
assembling methods and fields in sequence, from the starting conditions to the goal
conditions.

132

6.1. CASE STUDY: REFACTORING JFREECHART

start(dummy)[2]

finish(dummy)[3]

0 1 2 3 4

createLineChart[4]

res 0 1 2 3 4

0 1 2 3 4

ChartParameters[5]

res 0 1 2 3 4

(da,boolean,tWithDateAxis)

(data,DefaultCategoryDataset,@populated)

(gu,boolean,tGenUrls)

(f,String,tCategoryAxisLabel)

(lr,boolean,tReqLegend)

(a,String,tValueAxisLabel)

(po,PlotOrientation,tPlotOrientation)

(title,String,tChartTitle)

(tt,boolean,tGenTooltips)

(gen_0,JFreeChart,t2D)

(gen_0,JFreeChart,tLineChart)

(gen_1,ChartParameters,populated)

1 ChartParameters gen_1 = new ChartParameters(title, da, gu, tt, lr);
2 JFreeChart gen_0 = ChartFactory.createLineChart(gen_1, f, a, data, po);

Figure 6.9: Solution to the LineChartMaker query with a parameter object. Compare with
Figure 6.5.

133

CHAPTER 6. EVALUATION AND DISCUSSION

6.1.6 Converting parameters to state
For our next example, we decide that rather than passing in the reqLegend, req-
Tooltips and genUrls parameters each time we construct a chart, we would like the
factory to remember these parameters as part of its mutable state. Each time a new
chart is created, the ChartFactory should consult the current default values for these
parameters and use them.

To perform this change, we first add these fields to the ChartFactory. We put each
one in a corresponding resource. We could have put these properties in a common re-
source, but then we would have had to insist that they should be initialised in a specific
order. We have also removed the newly added fields from the ChartParameters class,
simplifying it. Note that we have added a composite property @factoryConfigured to
refer to the state of all of @c1, @c2, @c3 being established. This lets us conveniently
request all three properties with a single keyword in the createXYBarChart method
specification. We also make the methods of ChartFactory nonstatic, since we now
require the factory to carry a significant amount of state. The changes are as follows.

1 public class ChartFactory {
2 public ChartFactory() result: ++any. { }
3
4 composite @factoryConfigured = (@c1, @c2, @c3);
5 resource urlConfig {
6 properties @c1;
7 private boolean currentUrls;
8 public void setGenUrls(boolean urls)
9 urls: tGenUrls;

10 this: maintain, any, ++@c1. {
11 currentUrls = urls;
12 }
13 }
14 resource legendConfig {
15 properties @c2;
16 private boolean currentLegend;
17 public void setReqLegend(boolean legend)
18 legend: tReqLegend;
19 this: maintain, any, ++@c2. {
20 currentLegend = legend;
21 }
22 }
23 //Similar resource for tooltipsConfig with @c3
24
25 public JFreeChart createLineChart(ChartParameters cp,
26 String categoryAxisLabel, String valueAxisLabel,
27 DefaultCategoryDataset dataset, PlotOrientation orientation)
28 cp: populated; categoryAxisLabel: tCategoryAxisLabel;
29 valueAxisLabel: tValueAxisLabel; dataset: @populated;
30 this: @factoryConfigured; orientation: tPlotOrientation;
31 result: ++tLineChart, ++t2D. { ... }
32 //Similar annotations for other createXChart methods
33 }

The solutions that were found in the various ChartMaker classes are similar to the
one shown in Figure 6.10.

134

6.1. CASE STUDY: REFACTORING JFREECHART

recv 0 1 2 3 4

createLineChart[4]

res recv 0 1 2 3 4

0 1

ChartParameters[9]

res 0 1

start(dummy)[2]

recv 0

setGenTooltips[11]

res recv 0

ChartFactory[6]

res

finish(dummy)[3]

recv 0

setGenUrls[5]

res recv 0

recv 0

setReqLegend[7]

res recv 0

(gen_0,JFreeChart,tLineChart)

(gen_0,JFreeChart,t2D)

(gen_2,ChartParameters,populated)

(a,String,tValueAxisLabel)

(data,DefaultCategoryDataset,@populated)

(gu,boolean,tGenUrls)

(tt,boolean,tGenTooltips)

(f,String,tCategoryAxisLabel)

(po,PlotOrientation,tPlotOrientation)

(lr,boolean,tReqLegend)

(da,boolean,tWithDateAxis)
(title,String,tChartTitle)

(gen_1,ChartFactory,@c3)

(gen_1,ChartFactory,ready)

(gen_1,ChartFactory,ready) (gen_1,ChartFactory,ready)

(gen_1,ChartFactory,@c1)(gen_1,ChartFactory,@c2)

1 ChartParameters gen_2 = new ChartParameters(title, da);
2 ChartFactory gen_1 = new ChartFactory();
3 gen_1.setGenTooltips(tt);
4 gen_1.setReqLegend(lr);
5 gen_1.setGenUrls(gu);
6 JFreeChart gen_0 = gen_1.createLineChart(gen_2, f, a, data, po);

Figure 6.10: Solution to the LineChartMaker query with a parameter object and pre-configured
state. Compare with Figure 6.9.

135

CHAPTER 6. EVALUATION AND DISCUSSION

6.1.7 Splitting ChartTheme
This refactoring is based on one of the ”big refactorings” in Fowler’s book, Extract
Hierarchy [34, p. 375]. This refactoring replaces a single class with a hierarchy of
classes in a case where the single class is doing a considerable amount of work involv-
ing conditional statements. The conditionals are also natural opportunity to introduce
polymorphism, as in the Replace Conditional With Polymorphism refactoring [34, p.
255]. In JFreeChart we have identified a natural opportunity to apply this refactoring in
the class StandardChartTheme. This class is responsible for applying visual styles to
charts. It contains persistent state that describes the visual style, as well as knowledge
about how to apply this style to different concrete plot types.

Before the refactoring, when StandardChartTheme is applied to a chart, it tests
what concrete plot type the chart contains:

1 public void apply(JFreeChart chart) this: @configured; chart: ++themed.
{

2 //...
3 Plot plot = chart.getPlot();
4 if (plot != null) {
5 applyToPlot(plot);
6 }
7 //...
8 }
9

10 protected void applyToPlot(Plot plot) {
11 if (plot == null) {
12 throw new IllegalArgumentException("Null ’plot’ argument.");
13 }
14 if (plot instanceof PiePlot) {
15 applyToPiePlot((PiePlot) plot);
16 }
17 else if (plot instanceof CategoryPlot) {
18 applyToCategoryPlot((CategoryPlot) plot);
19 } else if //...
20 }

Specialised methods such as applyToCategoryPlot contain the logic that applies to
a particular plot type. Our refactoring splits the StandardChartTheme into several
subclasses, one for each plot type. We then introduce a new factory method that creates
the appropriate subclass that applies to a given chart. This is shown as a class diagram
in Figure 6.11. We introduce the subclasses PieChartTheme, XYChartTheme and
CategoryChartTheme. These are all we need to cover the charts that are created
in our example application, but it would have been straightforward to introduce even
more subclasses to cover all the chart types that JFreeChart supports. We move as
much type-specific code as possible down from the superclass into the new subclasses.
This involves the refactorings Push Down Method [34, p. 328] and Extract Class [34,
p. 149].

The extracted subclasses and the factory method are similar to the following.

136

6.1. CASE STUDY: REFACTORING JFREECHART

StandardChartTheme

PieChartThemeXYChartTheme CategoryChartTheme

ChartTheme getTheme(JFreeChart)
ChartFactory

StandardChartTheme()
StandardChartTheme

StandardChartTheme

JFreeChart Plot

XYPlot PiePlot CategoryPlot

Before After

Figure 6.11: Class diagram for the Split ChartTheme refactoring

1 class StandardChartTheme {
2 //...
3 //Empty method to be overridden by subclasses
4 void applyToPlot(Plot plot) this:@configured; plot:any. { }
5 //...
6 }
7 class CategoryChartTheme extends StandardChartTheme {
8 void applyToPlot(Plot plot_) this:@configured; plot_:any. {
9 CategoryPlot plot = (CategoryPlot) plot_;

10 plot.setAxisOffset(this.axisOffset);
11 //Code to apply a theme to a CategoryPlot
12 }
13 //Other methods that are needed for CategoryPlot
14 }
15 class ChartFactory {
16 public static StandardChartTheme getTheme(JFreeChart chart) chart:

any; result: ++any.{
17 if (chart.getPlot() instanceof CategoryPlot) {
18 return new CategoryChartTheme();
19 } else if (chart.getPlot() instanceof PiePlot) {
20 return new PieChartTheme();
21 } else //...
22 }
23 }

Note that when we add a factory method, it provides an additional way to obtain a value
of type StandardChartTheme, but one which takes more arguments than the old con-
structor. This means that using the factory method will be a larger solution than using
the constructor, and therefore the solver will not give priority to the factory method.
We solve this by removing the Poplar annotations from the StandardChartTheme
constructor, and from those of its subclasses, which means that the factory method
will be the only solution available for this subproblem. After we have performed these
changes, the solutions in the ChartMaker classes are as shown in Figure 6.12.

137

CHAPTER 6. EVALUATION AND DISCUSSION

Field legendBgPaint[9]

0

createTheme[21]

res 0

finish(dummy)[3]

recv 0

apply[4]

res recv 0

Field bgPaint[7]

recv 0

setLegendBackgroundPaint[5]

res recv 0

start(dummy)[2]

LineChartMaker[16]

res Field myCategoryData[37]

recv 0

useFactoryIndirect[12]

res recv 0

recv 0

setChartBackgroundPaint[6]

res recv 0

(gen_3,Paint,tLgBackgroundPaint)

(gen_9,StandardChartTheme,AnyLabel())

(gen_0,JFreeChart,themed)

(gen_1,Paint,tBackgroundPaint)

(gen_9,StandardChartTheme,@lbpSet)

(gen_9,StandardChartTheme,AnyLabel())

(this,ConfigPanel,AnyLabel())

(this,ConfigPanel,AnyLabel())

(this,ConfigPanel,Unresolved@inited)

(gen_6,LineChartMaker,AnyLabel())

(gen_18,DefaultCategoryDataset,@populated)

(gen_0,JFreeChart,AnyLabel())

(gen_0,JFreeChart,AnyLabel())

(gen_0,JFreeChart,tLineChart)

(gen_9,StandardChartTheme,@rbpSet)

1 LineChartMaker gen_6 = new LineChartMaker();
2 DefaultCategoryDataset gen_18 = this.myCategoryData;
3 Paint gen_3 = this.legendBgPaint;
4 Paint gen_1 = this.bgPaint;
5 JFreeChart gen_0 = gen_6.useFactoryIndirect(gen_18);
6 StandardChartTheme gen_9 = ChartFactory.createTheme(gen_0);
7 gen_9.setLegendBackgroundPaint(gen_3);
8 gen_9.setChartBackgroundPaint(gen_1);
9 gen_9.apply(gen_0);

Figure 6.12: Solution to the makeLineChart query with a split chart theme. Compare with
Figure 6.4.

138

6.1. CASE STUDY: REFACTORING JFREECHART

start(dummy)[2]

finish(dummy)[3]

recv 0

zoom[4]

res recv 0

Field chart[22]
(zf,double,zoomDelta)

(this,ConfigPanel,AnyLabel())

(gen_0,JFreeChart,@zoomed)

(gen_0,JFreeChart,AnyLabel())

1 JFreeChart gen_0 = this.chart;
2 gen_0.zoom(zf);

Figure 6.13: Solution to the zoomIn query with a hidden delegate. Compare with Figure 6.3.
The other zoom methods have similar solutions.

6.1.8 Hiding a delegate
The JFreeChart class delegates many operations to the Plot class or to one of its sub-
classes. In order to perform an operation such as zooming, it is necessary to first obtain
the Plot from the JFreeChart and then zoom. In this kind of situation, it is possible to
perform the Hide Delegate refactoring [34, p. 157]. The reverse of this refactoring is
Remove Middle Man [34, p. 160] and the same principles apply. Introducing this refac-
toring with Poplar is extremely simple. We add a forwarding method to JFreeChart:

1 class JFreeChart {
2 //...
3 resource zoomState {
4 properties @zoomed;
5
6 void zoom(double factor) factor: zoomDelta; this: ++@zoomed. {
7 plot.zoom(factor);
8 }
9 }

10 //...
11 }

We have also added a property and a resource to track whether the chart has been
zoomed. From the perspective of our client application, the JFreeChart class is more
accessible than Plot, so forwarding methods like this one always take precedence, lead-
ing to smaller solutions, as can be seen in Figure 6.13. Once sufficient forwarding
methods have been introduced, one may disable direct access to the Plot class if this is
desirable. In the reverse refactoring, one may remove all pure forwarding methods once
access to the delegate object has been granted, provided that the new, longer solutions
will not see competition from some other possible solution.

139

CHAPTER 6. EVALUATION AND DISCUSSION

6.1.9 Introducing data readers

In this final section we consider another of Fowler’s ”big refactorings”: Tease Apart
Inheritance [34, p. 362]. In the original JFreeChart library, we may note that multiple
data sets have JDBC reading functionality. Thus, data set classes are described by two
adjectives: what kind of data set they are, and whether they support JDBC. Thus we
have JDBCCategoryDataset, DefaultCategoryDataset, JDBCPieDataset, and so
on. In this situation, the class hierarchy is doing ”two jobs at once”, in Fowler’s terms,
and it is appropriate to extract one of these functionalities into a separate hierarchy of
delegate classes. Thus, we introduce the concept of a DataReader, which is a delegate
that has some functionality for obtaining data from a source. We pass this delegate
to the constructor of the top level AbstractDataset class. Concrete subclasses will
then need to decide how to make use of it. We also add new functionality by turning
the CSV class, which had been separate (producing a CategoryDataset only) into a
second kind of data reader.

Substeps of this refactoring include refactorings such as Extract Class and Move
Method. The class diagram before and after our changes can be seen in Figure 6.14.

1 class AbstractDataset {
2 resource data {
3 properties @populated;
4 private DataReader reader;
5 }
6 //...
7 AbstractDataset(DataReader reader) reader:@dataLoaded; result: +

@populated. {
8 this();
9 this.reader = reader;

10 readInitialData(); //Subclasses implement this method in different
ways

11 }
12 //...
13 }
14
15 abstract class DataReader {
16 resource data {
17 properties @dataLoaded;
18 }
19
20 abstract Collection<String> getRowKeys();
21 abstract Collection<String> getColumnNames();
22 abstract Collection<Double[]> getDataValues();
23 }
24
25 class JDBCDataReader {
26 JDBCDataReader(String url, String driverName,
27 String user, String passwd)
28 throws ClassNotFoundException, SQLException
29 result: ++any; url: jdbcUrl; driverName: jdbcDriver;
30 user: jdbcUser; passwd: jdbcPasswd. {
31
32 Class.forName(driverName);
33 this.connection = DriverManager.getConnection(url, user, passwd);
34 }
35
36 void executeQuery(String query) throws SQLException query: sqlQuery;
37 this: ++@dataLoaded. { ... }
38 } //Similar code for CSVDataReader

140

6.1. CASE STUDY: REFACTORING JFREECHART

DataReader

JDBCDataReader

CSVDataReader

AbstractDataset

AbstractSeriesDataset

AbstractXYDataset

DefaultCategoryDataset DefaultPieDataset

JDBCCategoryDataset JDBCPieDataset

JDBCXYDataset

AbstractDataset

AbstractSeriesDataset

AbstractXYDataset

CSV

DefaultCategoryDataset DefaultPieDataset

Before

After

Figure 6.14: Class diagram for the DataReader refactoring

141

CHAPTER 6. EVALUATION AND DISCUSSION

finish(dummy)[3]

0

DefaultCategoryDataset[4]

res 0

start(dummy)[2]

CSVDataReader[13]

res

recv 0

readData[11]

res recv 0

(gen_0,DefaultCategoryDataset,@populated)

(fr,Reader,tCSVreader)

(gen_2,CSVDataReader,AnyLabel())

(gen_2,DataReader,@dataLoaded)

1 CSVDataReader gen_2 = new CSVDataReader();
2 gen_2.readData(fr);
3 DefaultCategoryDataset gen_0 = new DefaultCategoryDataset(gen_2);

Figure 6.15: Solution to the categoryCSV query with data readers. Compare with Figure 6.6.

In Figure 6.15 and Figure 6.16, solutions can be seen for the categoryCSV and
categoryJDBC methods, respectively. Similar solutions were produced for other
methods, such as pieCSV and pieJDBC, etc.

We may note that in this case, constructing the CSVReader is simpler than con-
structing JDBCReader from a Poplar perspective, since the former requires fewer
actions. In methods such as categoryJDBC (Section 6.1.1) it is only the absence of
a FileReader with the label tCSVreader that forces the construction of the JDBC
equivalent. If one wants additional certainty that the correct kind of reader is being
constructed, additional labels may be used for disambiguation.

142

6.1. CASE STUDY: REFACTORING JFREECHART

finish(dummy)[3]

0 1 2 3

JDBCDataReader[15]

res 0 1 2 3

Field url[21]

Field query[13]

0

DefaultCategoryDataset[4]

res 0

Field pass[25]Field user[27]

recv 0

executeQuery[10]

res recv 0

Field driver[23]

start(dummy)[2]

(gen_4,JDBCDataReader,AnyLabel())

(gen_8,String,jdbcUrl)

(gen_2,String,sqlQuery)

(gen_0,DefaultCategoryDataset,@populated)

(gen_12,String,jdbcPasswd)
(gen_14,String,jdbcUser)

(gen_4,DataReader,@dataLoaded)

(gen_10,String,jdbcDriver)

(this,ConfigPanel,AnyLabel())

(this,ConfigPanel,AnyLabel()) (this,ConfigPanel,AnyLabel())
(this,ConfigPanel,AnyLabel())

(this,ConfigPanel,AnyLabel())

1 String gen_8 = this.url;
2 String gen_10 = this.driver;
3 String gen_14 = this.user;
4 String gen_12 = this.pass;
5 String gen_2 = this.query;
6 JDBCDataReader gen_4 = new JDBCDataReader(gen_8, gen_10, gen_14, gen_12

);
7 gen_4.executeQuery(gen_2);
8 DefaultCategoryDataset gen_0 = new DefaultCategoryDataset(gen_4);

Figure 6.16: Solution to the categoryJDBC query with data readers. Compare with Figure 6.7.

143

CHAPTER 6. EVALUATION AND DISCUSSION

6.2 Application to Fowler’s Refactorings

We now discuss the application of Poplar to all of the refactorings found in Fowler’s
book. The structure of this discussion mirrors Fowler’s own way of structuring his
catalogue of refactorings, with one section for each of his chapters.

We will use the symbol # to indicate that Poplar is generally useful with respect to
a given refactoring, 4 to indicate that it is sometimes useful, and × to indicate that it
is generally not useful.

In the absence of other heuristics, Poplar always prefers short solutions over long
ones. For this reason, it is important to know whether a particular refactoring makes
solutions larger or smaller. If an existing solution becomes larger, it might no longer
be selected. If a new solution becomes smaller than existing ones, it will always be
selected instead of those. We call the minimum number of steps from a starting context
to a goal the path length of a solution. In the following tables, we have indicated
whether particular refactorings make paths longer or shorter. If the results are not as
desired, interactive experimentation may be needed. It should be noted that in the case
where a component supplier is supplying his own labels, which are not shared with
other components, they are also able to control all the paths that lead to solutions for
those labels, which eliminates the need for experimentation.

6.2.1 Composing methods

These refactorings are generally not intended to cross the component boundary, expos-
ing changes in a service component to clients. Instead they are intended to help the
developer of a component to structure his code better for his own benefit. Even though
this is not the main focus of Poplar, there are still some situations where it can help.

Refactoring Feas. Technique Comments Ex.

Extract method # A query may be used to
invoke the new method

Inline method ×

Inline temp × Queries cannot replace
individual variables

Replace temp with
query × Queries cannot replace

individual variables
Introduce explaining
variable ×

Split temporary variable ×
Remove assignments to
parameters ×

Replace method with
method object #

A single query may be
used to construct the ob-
ject and invoke a method
on it

Substitute algorithm × Poplar cannot be used to
aid readability

Those refactorings that focus on introducing, removing or changing temporary vari-
ables (”temps”) are at too fine grained a level for Poplar to be useful. Poplar queries
replace statements, not expressions such as variables. However, in the case of refactor-
ings such as Extract method and Replace method with method object, queries can be
used to invoke the resulting method or method object. This adds flexibility, since the
programmer can easily perform changes such as adding or removing parameters of the
extracted method afterward.

144

6.2. APPLICATION TO FOWLER’S REFACTORINGS

6.2.2 Moving features between objects
The refactorings in this section are a very good fit for Poplar. We call them ”structural”,
since they change the structure and exported interfaces of classes without essentially
changing any of the overall capabilities of a component or set of classes.

Refactoring Feas. Technique Comments Ex.

Move method # Invoke method with
query

Move field # Access field with query

Extract class # Access members in the
new class using queries

Inline class 4
Access members in the
destination class using
queries

Clients must not depend
on the old class name ex-
plicitly

Hide delegate 4
Access members in the
destination class using
queries

Clients must not depend
on the old class name ex-
plicitly. Paths become
shorter.

6.1.8

Remove middle man 4
Extra protocol steps may
be used to introduce calls
to the delegate

6.1.8

Introduce foreign
method 4

Queries may possibly be
used to construct and
to invoke the foreign
method

Introduce local exten-
sion 4

Poplar may help in auto-
matically instantiating a
wrapper (but not a sub-
class)

Poplar is generally very applicable to these refactorings. However, one of the main
limitations is that client queries must not be dependent on class names that will disap-
pear. Both Inline class and Hide delegate involve removing dependencies on a specific
class. With a query such as

C x = #produce(C, @p);
a dependency on the class C is exposed to clients, and this cannot automatically

be removed. This is also true if the clients declare a variable of type C. On the other
hand, if the class C is only used as an intermediate step to achieve something else (and
if these steps are automatically generated by Poplar), then C can easily be inlined or
hidden.

With the Hide delegate refactoring, members that are now accessed through the
outer class instead (from the client’s perspective) become available on shorter paths
(using smaller solutions) than before. This means that if the same members are both
available through the delegate and through the outer class, the outer class will always be
favoured. The shortening of paths in general may also change some existing solutions
to other queries.

145

CHAPTER 6. EVALUATION AND DISCUSSION

6.2.3 Organising data
Poplar is generally useful for these refactorings. When data items are reorganised, the
smallest unit that can be identified is generally a field or the return values of methods.
Poplar can describe these data elements using labels. As long as queries are used to
access these items, changes in data organisation and structure are mostly transparent.
One exception is that Poplar does not yet have explicit collection or array support,
something that could be added in the future.

Refactoring Feas. Technique Comments Ex.

Self encapsulate field #
Describe field with
labels, access it using
queries

Questionable benefit

Replace data value with
object # Paths become longer

Change value to refer-
ence ×

Poplar may help in re-
placing constructor calls
with factory method calls

Change reference to
value ×

Poplar may help in
replacing factory method
calls with constructor
calls

Replace array with ob-
ject × Poplar does not yet sup-

port arrays
Duplicate observed data ×

Change unidirectional
association to bidirec-
tional

4

If queries are used, the
new reference can be
used automatically where
possible

Paths become shorter

Change bidirectional
association to unidirec-
tional

4
If queries are used, ac-
cess can be redirected
where possible

Paths become longer

Replace magic number
with symbolic constant 4

If the constant is labelled,
Poplar may be used to ac-
cess it in some cases

Encapsulate field #
Label or constrain the
field. Use queries to ac-
cess it.

Encapsulate collection × Poplar does not yet have
collection support.

Replace record with
data class ×

Poplar may help in
accessing the individual
members of the data
class.

Replace type code with
class #

Poplar helps when
method signatures that
use the type code need
to change to use the new
class

Replace type code with
subclasses # As above

Replace type code with
state/strategy # As above

Replace subclass with
fields #

Poplar may help in in-
voking a new factory
method instead of ex-
plicit constructors

Clients must not depend
on the old class name ex-
plicitly

146

6.2. APPLICATION TO FOWLER’S REFACTORINGS

6.2.4 Simplifying conditional expressions
Poplar is generally a poor fit for the refactorings described in this chapter. For the
most part, they do not cross the service/client component boundary, and they operate
at the fine grained level of individual variables. More generally, the goal of most of the
refactorings in this chapter is to improve code readability, which is something Poplar
cannot do, and which also falls outside the problem of the composability-evolvability
conflict.

Refactoring Feas. Technique Comments Ex.

Decompose conditional ×
Poplar cannot be used to
replace individual vari-
ables

Consolidate conditional
expression × As above

Consolidate duplicate
conditional fragments ×

Poplar cannot be used for
intra-method code move-
ment

Remove control flag × Poplar is not applicable
Replace nested con-
ditional with guard
clauses

× Poplar does not generate
branches

Replace conditional
with polymorphism 4

Poplar may help in re-
placing a factory method
with a constructor

6.1.7

Introduce null object × Poplar cannot be used to
replace specific values

Introduce assertion × Poplar has no clear bene-
fit

147

CHAPTER 6. EVALUATION AND DISCUSSION

6.2.5 Making method calls simpler
Changes in method signatures are one of the most suitable refactoring types for Poplar.
Poplar can easily be applied to most of the refactorings in this chapter, as we have
demonstrated in several examples.

Refactoring Feas. Technique Comments Ex.

Rename method #

If the method is in-
voked using a query, we
can guarantee correct re-
placement.

Poplar makes method
and field names entirely
irrelevant.

Add parameter #
Parameters can be found
if method invoked using a
query.

Paths become longer 6.1.5

Remove parameter #
Parameters can be re-
moved if method invoked
using a query.

Paths become shorter 6.1.5

Separate query from
modifer #

A separate property
should express the state
of having been modified.

Here, query is a Java
method that queries a
value, not a Poplar query

Parameterise method #
The parameter can be
found if method invoked
using a query.

Paths become longer

Replace parameter with
explicit methods #

Additional labels should
be used to disambiguate
between methods.

Paths become shorter

Preserve whole object #
Parameters can be re-
placed if method invoked
using a query.

Paths become shorter

Replace parameter with
method #

Automatic if the inner
access is done using a
query.

Introduce parameter ob-
ject #

Parameters can be re-
placed if method invoked
using a query.

Paths become shorter 6.1.5

Remove setting method × Poplar adds no benefit
Hide method × Poplar adds no benefit
Replace constructor
with factory method 4 Factory method may

compete with constructor 6.1.7

Encapsulate downcast × Poplar adds no benefit
Replace error code with
exception × Poplar does not support

exceptions yet
Replace exception with
test × Poplar does not support

exceptions yet

148

6.2. APPLICATION TO FOWLER’S REFACTORINGS

6.2.6 Dealing with generalisation
When features are moved between different levels in the class hierarchy, or when
classes are removed or introduced, interface compatibility often breaks in a similar
manner as in Section 6.2.5. Poplar can be used in many cases to ease the transition.
However, the same caveat as in Section 6.2.2 applies: if clients explicitly reference
a class name, whether through a variable type or a query, this class cannot suddenly
disappear without breaking the client.

Refactoring Feas. Technique Comments Ex.

Pull up field × Does generally not make
the API incompatible

Pull up method × As above 6.1.7
Pull up constructor
body × As above

Push down method 4

If queries are used, the
new method can gener-
ally be found automati-
cally.

Sometimes, a downcast
or type change of a vari-
able might be needed.

6.1.7

Push down field 4
If queries are used, the
new field can generally
be found automatically.

As above

Extract subclass 4
Queries may help in cre-
ating and using the new
class.

As above 6.1.7

Extract superclass × Does generally not make
the API incompatible

Extract interface ×

Does generally not make
the API incompatible.
Poplar has no interface
support yet.

Collapse hierarchy 4
Queries may help in cre-
ating and using the new
class.

Sometimes, manual casts
or type changes may be
needed.

Form template method × Does generally not make
the API incompatible

Replace inheritance
with delegation #

Poplar can help create
and use the new dele-
gate objects if queries are
used

6.1.9

Replace delegation with
inheritance #

Poplar can help create
objects with new con-
structor signatures

6.1.9

149

CHAPTER 6. EVALUATION AND DISCUSSION

6.2.7 Big refactorings

In big refactorings, many steps, if not all, can be supported by Poplar. We have given
examples of two of these refactorings with our JFreeChart application.

Refactoring Feas. Technique Comments Ex.

Tease apart inheritance #

Objects in the hierar-
chy should be created
and interacted with using
queries.

6.1.9

Convert procedural de-
sign to objects # As above

Separate domain from
presentation # As above

Extract hierarchy # As above 6.1.7

6.2.8 New refactorings

The refactorings in this section are not discussed by Fowler, but become easy to per-
form with Poplar, and we believe that they may be useful in many situations.

Refactoring Feas. Technique Comments Ex.

Introduce preaction #

Introduce a mandatory
method invocation prior
to accessing a method or
field. This can be done
using Split protocol state
below.

May be used for logging,
debugging etc

Introduce postaction ×

Poplar cannot be used to
require a method invoca-
tion after something else
has been achieved. Possi-
ble future extension.

Collapse protocol state # Collapse properties or la-
bels into one

Split protocol state #
Introduce a new property
or label, and require it in
order to produce another

Replace parameter with
setter #

Introduce setting method,
associate with a property
(new or existing)

6.1.6

Replace setter with pa-
rameter # Remove setting method 6.1.6

6.2.9 Summary

In total, Martin Fowler provides 72 different refactorings, although many of them are
each other’s inverses. Out of these, Poplar can generally always be applied to 27 refac-
torings (#), and can be applied in certain circumstances to another 14 refactorings
(4). It is non-applicable to 31 refactorings (×), although this includes refactorings
that Poplar is not intended to be used with, such as ”simplifying conditional expres-
sions”, a type of refactoring that does not affect interfaces. Poplar is highly applicable
to a wide range of refactorings. Obstacles to applying Poplar often involve the explicit
dependency on a class name. A general consideration when applying Poplar with a cer-
tain refactoring is whether solution paths become shorter or longer; this may influence
what generated results are to be expected when the Poplar solver is run.

150

6.3. DISCUSSION

6.3 Discussion

In the experiments we have just shown, we performed a number of successive transfor-
mations of a client of the JFreeChart API. In each case, when it was possible, Jardine
was able to catch up with the change and correctly generate new integrating code. In
some cases no valid solution existed, and Jardine could correctly tell the user that there
was a problem, and what the problem was.

The range of transformations we used is not exhaustive, and does not show what
the limit of Poplar’s capabilities is, but it does show a lower bound. We were able to
successfully use it for a range of transformations, many of which are refactorings rec-
ommended by Fowler [34]. Others were selected specifically to demonstrate Jardine’s
abilities, though we do not believe that they are contrived or far-fetched.

What we have confirmed above all is that Jardine successfully decouples superfi-
cial, structural variance from true variance in a component’s capabilities. In the trans-
formations we carried out, JFreeChart’s abilities were not reduced, but its interfaces
and their constraints, temporal and otherwise, were drastically changed. Jardine was
able to find the new, updated method invocation sequences and arguments required to
retain the same functionality as the superficial structure of the component changed.
Given that refactorings are such an essential part of software maintenance, the value of
this ability is clear.

The case study we have just carried out has also demonstrated that it is feasible, at
least in this case, to take an existing Java library and retrofit Poplar annotations into it.
This means that Poplar would be valuable not only for new software development, but
also as a tool that can help manage existing code bases.

In all of these cases, Jardine found solutions in under 1.5 seconds, and the search
space for plans was below 50 candidates. In addition, memory usage was stable, never
exceeding 300 MB.

We also discussed the possible application of Poplar to the refactorings in Martin
Fowler’s book on the topic, and found that Poplar could be applied to most of them.
Poplar is especially strong in the categories Moving features between objects, Making
method calls simpler, Dealing with generalisation, and Big refactorings. On the other
hand, some of Fowler’s refactorings concern rearranging data or code inside methods,
rather than changes that are visible in the boundary between components. Such fine
grained changes are outside of the scope of Poplar. In general, Poplar has very good
applicability to the problem that it targets, namely the evolvability-composability con-
flict.

6.3.1 Limitations

An important limitation of Poplar is that control flow constructs are not generated. For
instance, we do not generate loops or if-statements. This means that when flow control
is required, as in the case of an iterator which needs to repeatedly test a truth condition
in a loop, this information should be communicated externally. For an iterator, separate
queries could be used for the truth condition and for the loop body.

Poplar assumes, in #produce queries, that the type of the desired value is known.
The more specific this type is, the easier the query will be to resolve. However, this
may also couple the client strongly to a particular implementation, in the case where
the same functionality is supplied by different components that have no shared type
hierarchy.

151

CHAPTER 6. EVALUATION AND DISCUSSION

In Section 4.4.1 and Section 4.6 we discussed some limitations that stem from the
basic formalism. The simple, restrictive aliasing scheme that we use is a source both
of inability to deploy Poplar (if the program cannot be described our uniqueness kinds)
and of imprecision in the analysis, which leads to an overestimation of the potential
resource mutations of a code fragment.

For instance, the AWT GUI toolkit, and by extension the Swing toolkit, has a prob-
lematic design feature in the java.awt.Frame class. When a new instance of Frame
is created, it registers an alias of itself in a class called AppCon. This behaviour can
be seen in the OpenJDK6 implementation of Frame, and probably in other versions
as well. The effect is that instances of Frame can never be unique, as they are aliased
by construction. This applies to javax.swing.JFrame as well, since it is a subclass of
the former class. Both of these toolkits are major parts of the official Java platform
libraries. And in fact, creating a new alias in a constructor, and registering it some-
where, is not such a controversial thing to do: we may expect that many frameworks
and libraries do this. However, a consequence from a Poplar perspective is that we may
never view a Frame or a JFrame as being unique.

One way out of this is to apply the distinction between ”Poplar methods” and ”plain
methods” described in Section 5.3. If this is done, uniqueness kinds need only apply
to those references that are directly visible to Poplar. However, using this strategy in-
creases the burden on the programmer, who has to manually ensure that the guaranteed
uniqueness property is upheld, and a more sophisticated solution is desirable.

Our treatment of basic establishers, which initialise properties, means that prop-
erties established by superclasses may not be used by the methods that establish the
corresponding subclass properties, which may be too restrictive for some programs.
Also, we cannot precisely identify objects that are mutated by external resources. As
we have seen in this chapter, these limitations do not preclude all realistic uses of
Poplar, but they would be the main limitations that need to be addressed.

6.3.2 Reliability

Developers using Poplar might be concerned about the fact that generated code can
vary from time to time. Our basic means of ensuring sensible outcomes of code gen-
eration are as follows. Firstly, variables with the same type and labels must be truly
equivalent. If they are not substitutable for each other, more labels should be added to
disambiguate. Second, protection spans should be used to protect those resources that
may not be mutated. In the case of handwritten code that surrounds queries, developers
may need to identify resources that need to be protected manually.

The outcome of a code generation attempt is dictated by the choices of algorithm
and heuristics. In general, we think that a good algorithm should strive to favour short
valid solutions over longer valid solutions, once other needs have been taken into ac-
count. Thus, one situation that may lead to unexpected outcomes is if a component
supplier makes it easier than before to produce a given type/label type, thereby mak-
ing the altered protocol a simpler means of production than existing protocols. In this
case, at the next regeneration, the shortened code fragment may out-compete some ex-
isting solutions in the quest to be shortest, which could have adverse consequences if
annotations are not precise enough.

152

6.4. CONCLUSION

6.3.3 Adoptability
In adopting Poplar for use in an existing Java code base, it is necessary to add annota-
tions concerning mutations, uniqueness, protocols, resources and so on. We have seen
that information such as mutation summaries and uniqueness can easily be inferred lo-
cally on a class by class basis, and such an inference tool should be simple to make. In
addition, if one sets up a temporary mapping between unmanaged fields and abstract
resources in a class (to be discarded afterwards), it should be easy to infer a partial set
of resource definitions. It is even possible to infer protocols, as in [75]. In addition,
when Poplar is introduced into an existing code base, it should be possible to start with
a small number of queries and annotations, and gradually expand the use of Poplar
within the code base.

6.3.4 Developing new Poplar components
We have seen in this chapter that it is feasible to retrofit Poplar into existing Java code
and use Jardine to integrate the resulting components. Development of new Poplar
components from scratch, on the other hand, might pose slightly different require-
ments. For one thing, one is able to influence the search process through the design of
interfaces.

If Jardine is used as the principal integration mechanism, API design no longer
needs to only take human users into account. Designing an API for Jardine might be
done with a specific purpose in mind. For instance, if methods are very fine grained,
each one performing only a minimal amount of functionality, then one obtains a fine
grained language that can be used to interact with the resulting component. A large
number of combinations of fine grained methods is possible, resulting in a larger search
space and a larger number of possible plans, and more integration flexibility. On the
other hand, more coarse grained methods, which establish many properties together,
reduce the size of the search space and may remove certain code fragments from the
final integration capabilities. Further work is needed in order to establish the best
design principles, but tentatively we believe that a maximally fine grained API is the
best approach, given that the performance of Jardine is already fully acceptable, and
likely can be optimised much more.

6.4 Conclusion

In this chapter, we have performed a case study on an application based on the well
known JFreeChart library, as well as discussed the application of Poplar to all of Mar-
tin Fowler’s well known refactorings. Our case study demonstrated the wide range of
refactorings that could be performed on service components in practice with the help of
Poplar, entirely without manual changes to client code. This shows the practical poten-
tial of the Poplar approach for evolution of component based software. The theoretical
discussion of Fowler’s refactoring catalog demonstrated that Poplar should always be
applicable to 27 of Fowler’s 72 refactorings, and conditionally applicable to 14 refac-
torings. Many of the remaining 31 refactorings do not affect interfaces and thus fall
outside Poplar’s focus. In the following chapter we will discuss general related work
and conclude this thesis.

153

7
Related Work and Conclusion

In this chapter, we discuss related work, conclude the thesis and comment on directions
for future work.

7.1 Related Work

In this section we discuss related work in general. Typestate checking, effect system
and alias confinement is discussed in the context of our formalisation, in Section 4.5.

7.1.1 Behavioural specifications

Hoare logic was a seminal formalism for method specification, which expressed pre-
conditions (P) and postconditions (R) together with program fragments: P {Q} R.
There is a large amount of extensions of this idea of specifying behaviours together
with fragments. Hatcliff, Leavens et al have provided a survey of behavioural interface
specification languages [69]. Poplar, too, is fundamentally based on this idea. What
Poplar and most other typestate and protocol related formalisms emphasise is a rel-
ative simplicity of the formalism used to specify Q and R. Many other specification
languages use first-order logic or languages of similar richness, for which automated
theorem proving is not decidable.

Design by contract [79] is a name for a family of practices where client and ser-
vice components are designed according to a shared functionality agreement. Such
agreements are often expresses in some kind of formal specification language. The
programming language Eiffel [56, p. 57] integrates a sophisticated assertion system
for contracts with the language itself. JML [67] is a markup language that supports
extended specifications, including pre- and postconditions for design by contract, for
Java. A JML compiler is able to compile JML into Java code that includes assertions
that verify the contracts as required. There are also tools such as the extended Java
static checker ESC/2, which can perform a wide range of static analyses from JML
input.

Separation logic [89, 88] solves the frame problem by guaranteeing that procedures
do not modify any state that has not been explicitly mentioned in its precondition.
Separation logic provides formalisms for reasoning about disjoint heaps, which are
guaranteed not to reference each other. This makes specifications modular and com-
posable.

155

CHAPTER 7. RELATED WORK AND CONCLUSION

7.1.2 Labelled argument selection

To the best of our knowledge, there is currently no major imperative programming lan-
guage that supports argument selection based on labels. The technique has been studied
in the context of labelled lambda calculus, however[1, 39, 38]. Labelled lambda calcu-
lus selects appropriate function arguments based on the labels of expressions. Haack
has extended ML with semantic symbols [48] to perform automated integration. They
are more sophisticated than mere labels, since they also contain axioms for reasoning
about concepts such as sets and orderings.

Languages such as ADA [68] and Common Lisp [106] support a notion of labelled
arguments, but this is used to allow the programmer to reorder or omit arguments,
and not as a basis for selecting the arguments to be passed from some kind of context.
Thus, while this mechanism can simplify maintenance programming, it cannot serve as
a foundation for an automated integration process. Objective-C uses argument labels to
help identify the method (called a selector) itself: reordering or omission of arguments
is not permitted. This mechanism provides no additional convenience compared with
Java beyond a more readable method naming [54, p. 16].

7.1.3 AI planning

Ghallab, Nau and Traverso have written an overview of the field [40]. Russell and
Norvig discuss AI planning in the broader context of artificial intelligence [100].

The first discussion of partial order planning was by McAllester and Rosenblitt [77].
For a friendly introduction, see [40, p. 99]. The algorithm lost popularity to other plan-
ning algorithms for some time due to concerns about its scalability. However, recently
Nguyen et al. were able to show that the techniques that made other planning algo-
rithms successful could also be applied to make POP efficient [83]. Ireland and Stark
have combined proof plans with partial order planning to synthesise imperative pro-
grams [57]. However, this is the only previous application of planning at the level of
code synthesis in a programming language that we are aware of. Ireland and Stark syn-
thesise programs from mathematical specifications bottom-up, which also means that
their domain logic is complex compared with Poplar.

There are many specialised languages for expressing planning problems. One ex-
ample is PDDL [100, p. 367], derived from STRIPS. The availability of such languages
means that it is in theory easy to replace planners and heuristics independently of other
parts of a system that uses planning algorithms. Our reason for developing our own
planner was the relative ease of development and the possibility of making changes to
the planner freely. Also, Poplar is not yet at a stage where a high performance planner
is needed.

7.1.4 Code synthesis and component generation

Poplar carries out a form of code generation based on AI planning. There is a rich
variety of existing work on code generation and program synthesis. In 1963, Church
[23] presented a survey of ongoing work in finite automata at the time. He identified
three central automata problems: the decision problem, the synthesis problem, and the
simplification problem. The synthesis problem concerns itself with whether it is possi-
ble to construct an automaton satisfying a given specification. A substantial amount of
research has been done into the field since the time, yielding various approaches with

156

7.1. RELATED WORK

varying degrees of success in special cases. However, in the general case, the problem
is undecidable.

Approaches to program synthesis can broadly be classified in three categories: de-
ductive, inductive, and transformational program synthesis. Inductive synthesis formu-
lates hypotheses from examples and then generates a corresponding program. We may
think of this as ”programming by example”. Jha, Gulwani et al recently presented a
combined deductive and inductive approach that uses an SMT solver and a library of
components to generate a program after first having been trained on examples [60].
In deductive synthesis, automated theorem proving is used to deduce the form of a
program. Given a specification such as

f(a)⇐ find z such that Q[a, z].

where f is the function to be synthesized, a is the input, z is the output, and Q
is a logical sentence of some background language, we use the prover to prove the
following theorem.

(∀a)(∃z)Q[a, z].

In proving this, with each proof step, we gradually construct a method for finding
z in terms of a. Manna and Waldinger give an introduction to the subject in their 1992
paper [76].

Several systems designed for deductive automated program development have been
constructed, such as SNARK [108], NUT [119], Amphion [74] and KIDS [104]. Am-
phion composes subroutine libraries using a theorem prover, operating fundamentally
at the same level of granularity as Poplar, but using a more complex search strategy.
It must be trained to fit a particular domain (such as libraries of scientific subroutines)
using proof tactics and heuristics.

Finally, transformational synthesis concerns itself with gradual refinement of a pro-
gram. Each transformation step improves the program in terms of performance while
preserving its observable behaviour. Thus this synthesis method requires some initial,
possibly inefficient version of the program to exist as a specification. An example of
this approach is the well-known Bird-Merteens formalism, described in [41]. Another
example is Darlington’s system, which successively applies transformations to increase
program performance [25].

In addition to these general approaches, it is also possible to take various highly
specialised approaches to program synthesis, such as program synthesis from state-
chart [49] specifications [121]. Srivastawa, Gulwani et al recently presented an ap-
proach that treats synthesis as generalised program verification [105]. Liu, Fu, Zhang
et al. combine code patterns with deductive synthesis to generate software specifically
for embedded systems [11]. Pnueli and Rosner have discussed how to synthesise reac-
tive modules [95].

Lämmermann applies structural synthesis of programs, which is a form of de-
ductive synthesis based on intuitionistic logic, to runtime composition of services in
Java [66]. The main contrast between his system and Poplar would be the focus on
services, which are relatively coarse grained components assumed not to have any ex-
ternally visible side effects, and the focus on runtime composition rather than compile
time composition. Because it composes individual Java statements, Poplar is operating
at a more fine grained level and emphasises containment of side effects.

GenVoca generators [13] were discovered by Batory and O’Malley in several inde-
pendently developed domain-specific component systems. They were later formalised

157

CHAPTER 7. RELATED WORK AND CONCLUSION

by Batory and Geraci[12] as extensions of the language P++, a superset of C++. Gen-
Voca components are parameterised, composable software generators that can be com-
bined hierarchically to generate concrete component implementations. Depending on
the precise details of a component generation scenario, the concrete interfaces of the
components (in GenVoca, too, sets of classes) may be different. This can be thought of,
on some level, as the inverse of the approach taken in Poplar. GenVoca generators push
flexibility to component users, top-down, by providing the possibility of generating
interfaces that have a range of different (subjective) concrete forms. Poplar compo-
nent clients pull flexibility from components by interpreting the fine grained building
blocks they offer in a way that is appropriate for the client context (through the plan-
ning/search algorithm). In both cases, a compositional subjectivity may be realised.
One important difference is that although Batory and Geraci provide algorithms for
verifying the correctness of the generated components, we do not believe that GenVoca
generators are well suited to handling component evolution. Using GenVoca gener-
ators involves manual work in finalising the integration of the generated components
and the client code, and this would need to be turned into an automated task in order to
adapt integrations to changes as easily as in Poplar.

7.1.5 Empirical studies of software evolution
Zenger et al proposed a taxonomy [132] of software evolution events based on four
axes: temporal properties (when does the change occur?), object of change (where
does the change occur?), temporal properties(when), and change support(how).

Dig and Johnson found that a large proportion of breaking changes are due to refac-
torings [28].

Vasa et al quantitatively studied component evolution in several software systems [120].
Component-based software usually involves a network of inter-component depen-

dencies, which necessitates synchronisation of developers when multiple interdepen-
dent components are being developed simultaneously. De Souza et al studied how
developer teams handle software dependencies and changes in practice [26].

7.1.6 Component matching, discovery and retrieval
There is much existing work that approaches the problem of component integration as
being fundamentally a problem of matching specifications. In such an approach, one
assumes a library of well-specified components. The problem to be solved is then:
how do we find the best component to use in order to satisfy a well specified functional
requirement? The seminal work in the area may be that of Zaremski and Wing [127,
126]. They define a lattice of different ways that a specification can match a component
query. Poplar queries fundamentally correspond to the plug-in match.

Some component retrieval systems use sophisticated automated theorem proving
in order to assure that the retrieved components are correct. In order to simplify the
computational complexity of this approach, Schumann and Fischer proposed [102] an
approach with a multi-layered proof filter. Higher level layers, which are simpler to
prove, are first used to filter out a large number of components, and only later are more
expensive, sophisticated filters used to assure the full correctness of a match.

A separate problem from that of formalised, automated matching done by tools is
interactive component search for end users. Reiss presents an interactive semantics-
based search with a web interface[97]. Users may enter examples of input-output pairs
that they want a valid component to match.

158

7.1. RELATED WORK

7.1.7 Component frameworks and techniques
The notion of a software component goes back to 1968. At the time, McIlroy con-
trasted [78] the software industry with the manufacturing of physical goods, which
benefited from a supply chain and from well-defined reusable components that could
be selected from a wide range of supplier offerings and assembled in a wide variety of
ways. At the time, there was a perception of a ”software crisis”, as the true difficulties
of large scale software development were starting to become apparent.

Component frameworks

Besides languages and tools, one can identify a third class of solutions to the integration
problem: frameworks, whose main parts usually consist of a library written in the same
host language that the user is developing software in, together with an API and coding
style designed to enable generally useful functionality that the language itself does not
provide. Component frameworks often serve to help define and isolate the notion of a
component and to provide integration, change and upgrade mechanisms. The scope is
not always strictly in-language: some frameworks also include auxiliary tools.

In this section, we discuss some widespread component frameworks. Generally
speaking, while they help discover and integrate components and manage the compo-
nent lifecycle in large software systems, they do not address the problem of fragility
caused by the information encoded interfaces. These frameworks augment program-
ming languages; they do not interfere with fundamental mechanisms or concepts in-
trinsic to the language.

OSGI , Open Services Gateway Interface [116], is a service and component system
for Java, which is implemented as a library and a runtime environment. It em-
phasises lifecycle management of components. For instance, components ex-
plicitly identify whether they are running, starting, stopping, stopped, installed
or uninstalled. Through callbacks and events, components can become aware of
their own and other components’ state changes. In contrast with models such
as CORBA, OSGI targets components that run in the same process (same JVM)
only. OSGI has been developed by the OSGI alliance, a coalition of companies,
and the first major release appeared in 2000. Its most widespread success is
perhaps as a foundation for the Eclipse rich client platform.

COM+ COM is a fundamental component model of applications and frameworks
found mainly in Microsoft operating systems and software. Like CORBA, it em-
phasises inter-language object and wiring management. COM+ later extended
it by adding declarative (qualitative) attributes to components, which enable
platform-dependent dependency injection. It has now largely been superseded
by the .NET framework [114, p. 356].

CORBA (Common Object Request Broker Architecture) [47] is a platform that was
originally released in 1991 by the Object Management Group, a non-profit con-
sortium seeking to create a standard for interoperability of heterogeneous com-
ponents. Components are described in an interface definition language (OMG
IDL) for which bindings exist for many programming languages, including Java,
Smalltalk and C++. Object requests go through the centralised request broker. A
special compiler generates proxy objects that appear to be ”real” local objects,
but forward all messages to a remote object.

159

CHAPTER 7. RELATED WORK AND CONCLUSION

The large amount of indirection necessary in order to integrate such a wide range
of platforms and programming languages means that CORBA components often
end up sacrificing some performance in order to gain interoperability.

JavaBeans are a connection-oriented component mechanism for Java, defined by Sun
(now Oracle) [112]. A JavaBean is a set of classes. Concepts defined by the
JavaBean standard include events, properties, introspection, customisation and
persistence. A new distinction between design-time and run-time is made: a bean
is expected to behave differently while it is being designed, before deployment,
and while it is being used, after deployment. Advanced specifications such as
persistence and producer-consumer frameworks are also available for JavaBeans.

There are also well-known techniques that are not strictly frameworks but that op-
erate on the same scale. The Java language supports reflection, as we have seen, which
allows a Java program to ”become aware” of itself, in a sense, by reasoning about its
classes and their member declarations. Reflection and dynamic classloading leads di-
rectly to the possibility of certain component techniques within the Java language itself.
For instance, JDBC is the standard Java SQL database connection package. Before it
can be used, it requires the program to load a driver explicitly, as seen in the following
example.

1 Class.forName("org.sqlite.JDBC");
2 Connection c = DriverManager.getConnection("jdbc:sqlite:test.db")

When the class org.sqlite.JDBC is loaded into a running JVM, its class initialiser is
run. The class registers itself and tells the DriverManager to begin recognising URLs
that begin with jdbc:sqlite. All other interaction with the driver is done through the
JDBC API, so there is no other need to directly interact with classes from the org.sqlite
package once its initialising class has been loaded.

It should be noted that the notion of component that we address in our work is
different from the one that has been discussed in this section: we are interested in
components as sets of classes in the Java language, running in a single virtual machine.

7.1.8 Handling component evolution
There is a wide range of work on handling evolution in component-based software
systems. Broadly, existing approaches may be classified according to whether they are
tools or language extensions. This distinction is still somewhat floating, since a tool
that depends on program annotations to perform some kind of rewriting or checking
can in effect be said to be an extended programming language.

Tools

Many solutions take the form of external tools designed to work with some language
or binary format. Diff-Catchup [123] is an interactive Eclipse plugin that can suggest
ways for the user to upgrade client code to match a new version of a supplied com-
ponent. The tool generates suggestions based on the output from UMLDiff [124], a
specialised tool for identifying version differences in code based on UML semantics.
There are three main threats to the validity of UMLDiff upgrades. API changes that
have no syntactic effects, such as an incompatible method contract change, cannot be
discovered by the tool. UMLDiff does not necessarily give correct results, although
studies show its reliability to be fairly high. Finally, UMLDiff depends on the presence

160

7.1. RELATED WORK

of ”voluntarily supplied” migration examples within the evolution history of the sup-
plied component; it must incorporate examples as to the new correct usage of its API.
Poplar does not have these problems. On the other hand, the novel language elements
in Poplar make it harder to adopt: programmers must use our specification model and
write corresponding annotations. Diff-Catchup can be adopted directly.

Stephen Kell has developed an integration language, Cake [63, 62], that integrates
components using interface relations at the level of object code. As such it is best suited
to languages like C and C++ and currently not useful for Java.

Language extensions

UpgradeJ [17] defines a Java extension that supports versioning of classes. When users
instantiate a class, they indicate which version to instantiate. Such indications can be
either an absolute version number, or the current recommended revision of a given ver-
sion number, or the latest version of a class. Furthermore, the language has an explicit
upgrade statement that performs the upgrade itself. In other words, class upgrading
is a first class language feature. Upgrades can take the form of new classes, redefini-
tions of existing class members, or extending existing classes with new members. The
approach supports sound incremental upgrading: every class only needs to be type-
checked once, even as new versions of other classes arrive. The scope of this approach
is slightly different from Poplar. The focus in UpgradeJ is on versioning of classes,
but Poplar focusses on handling interface and usage contract changes. Upgrades in
UpgradeJ cannot invalidate or remove existing code: future class versions must be
compatible with old ones, according to the usual notion of Java binary compatibility.
In addition, UpgradeJ focusses on handling runtime upgrades whereas Poplar is aimed
at developers needing a compile time solution.

Languages such as ML have module systems to help programming in the large [118,
p. 980] Currently, Java has no module system. Even though packages exist in a hier-
archical structure, there is no way to define relationships among packages: a package
cannot be contained in another, being visible only to its owner, in the way that a private
class is visible only to the class that declares it. However, there is currently ongoing
work on an official Java module system [109].

ArchJava is a language extension for programming in the large. It emphasises
expressing the large scale architecture of a Java system together with the code. It
guarantees communication integrity, the property that components only communicate
with components that they have been formally connected to [4].

Keris [130] is a Java extension that focuses on safe extension of modules and on
automatically inferring new wirings when an extension takes place.

The problem that Poplar focusses on is not strictly extension, but the more gen-
eral problem of evolution. It is important to note that the kind of evolution we seek
to address is not strictly monotonic evolution through addition or overriding of exist-
ing entities (classes, class members). We also address evolution that expresses itself
through the removal of entities, as well as lateral changes such as renaming and reor-
ganisation.

7.1.9 Other related work

Design patterns are a set of well-known programming idioms for object-oriented im-
perative programming languages. They were popularised by Gamma, Johnson, Helm

161

CHAPTER 7. RELATED WORK AND CONCLUSION

and Vlissides [37]. Many of the patterns strive to reduce coupling, for instance medi-
ator, adapter, proxy and facade. However, as would be the case with any in-language
technique, patterns cannot get around the constraints of the programming language it-
self, i.e. explicit dependencies on interfaces. Poplar can be thought of as a mechanism
that generates instances of the adapter pattern, one of the most well known patterns,
on the fly at compile time.

FeatureHouse [9] is a framework for language-independent composition of soft-
ware artifacts. Artifacts can range from source code to other entities such as docu-
mentation. The authors were able to demonstrate its use with a wide range of different
programming languages, including Java, Haskell and C. Artifacts are first broken down
into a hierarchical structure, and superimposition of these hierarchical structures yields
the final, composed structure.

In Aspect-oriented programming [64], programmers specify pointcuts using an ex-
pression language. A compiler (aspect weaver) inserts code at the pointcut sites at
compile time. The success of this approach means that programmers should be willing
to rely on a tool such as Poplar, which also inserts code at predefined sites.

7.2 Conclusion

We have now described, defined, implemented and investigated our approach. The time
has now come to conclude the present work and review our results.

Our working hypothesis was that it is possible to extend the Java language with
stateful labels in such a way that planning algorithms can be used to construct evolvable
integration links between components. We can now confirm this hypothesis.

In Chapter 2, we described the overall design of our language, a combination of
typestate, AI planning and effect systems. In Chapter 3 we described the semantics of
our language informally.

In Chapter 4, we formalised Poplar as an MJ extension and argued that it provides a
sound must-analysis for label establishment and a sound may-analysis for resource mu-
tations. Here we also identified some of the main limitations of our current design: the
alias confinement scheme is imprecise, which leads to overestimation of resource mu-
tations in some cases. Furthermore, mutations on external resources cannot be linked
to a specific object, which leads to a new programmer responsibility that cannot be stat-
ically checked. Our handling of newly established properties is also restrictive in that
we do not have the concept of frame properties (which have been initialised in some
class frames but not for others). All of these issues can potentially be addressed in
future work. The current design specifically aimed for simplicity in order to prove the
viability of a novel concept, and as the viability has now been established, increased
precision would be a logical next step.

In Chapter 5, we described our implementation of a Poplar compiler and showed
that the essential problems it is addressing - Poplar type checking and query solving
- are decidable problems. The main source of complexity in Poplar type checking is
resource fields with disjunctive specifications.

In Chapter 6, we performed a case study that demonstrates that integration links
can indeed be constructed and evolved for a wide range of transformations of a large
software library in a realistic application. The results show that a wide range of dif-
ferent transformations can be compensated for. We also discussed the application of
Poplar to Martin Fowler’s refactorings and found that it is able to simplify the task of
performing these in a majority of the cases.

162

7.3. FUTURE WORK

Considering the findings of this thesis, we believe that labelled argument selection,
combined with our model of resources and properties, together with a search algorithm
such as POP planning, is a viable approach to component integration in imperative
object-oriented languages, and for the purposes of component evolution, far more flex-
ible and robust than explicit integration through series of explicit method invocations.

7.3 Future Work

The novelty of our approach means that many different aspects are open for additional
investigation, in addition to the precision issues we have already identified.

7.3.1 Runtime composition
In our work, we have only investigated the use of Poplar for compile time composition
of components. However, with dynamic classloading and unloading it may be desir-
able to investigate runtime composition. The most important problem to solve in such a
scenario may be that of trust. In a compile time composition scenario, the composition
process is supervised, and developers can always, as a last resort, interfere and tweak
annotations if they do not obtain the desired results. At runtime, especially if a product
has been deployed to a customer site of some kind, there may be no possibility of su-
pervision or interference when new classes are encountered in the wild. Trust policies,
sandboxing of some kind, or even more fine grained effect systems may help mitigate
these problems.

7.3.2 Java-compatible syntax
The current Poplar syntax is incompatible with standard Java. For example, it intro-
duces new keywords such as unique and resource and uses @ signs to signify prop-
erties, a syntax that is normally used by Java annotations [45, p. 270]. In our work,
insisting on using our own syntax simplified development, but it might be possible to
make Poplar more accessible to many Java developers if, instead of using its own syn-
tax, it expressed all the extra information in valid Java annotations. Java already permits
annotations on all declarations, and JSR-308 [30] is an ongoing official Java extension
proposal that is designed to permit annotations on individual types. This means that the
granularity permitted by Java annotations should be sufficient to express all the neces-
sary Poplar metadata. Queries could be expressed as calls to ”magic” methods that do
nothing, but that are intercepted and replaced with solutions at compile time.

7.3.3 Additional language elements
An explicit inclusion modifier. Developers might want to specify labels or types that

should definitely be included as part of the solution to a query. Such a pref-
erence could be implemented as a search heuristic that gives preference to the
indicated label or type, possibly even favouring larger solutions up to a certain
limit. Having this ability would let developers specify precisely the details of the
integration that are important for their application and let the others be decided
according to the state of the components.

Subresources. The Boyland-Greenhouse effect system implements regions and subre-
gions [46], effectively creating a tree of regions for each type. It would be natural

163

CHAPTER 7. RELATED WORK AND CONCLUSION

to also implement subresources in Poplar, further increasing the precision of the
mutations that may be specified. Subresources lead to natural refinements of the
rules for subtyping and overriding. When a resource is mutated, all properties
in that resource and in any of its subresources would be lost. This corresponds
naturally to Statecharts [49] in the sense that a resource mutation would be a
transition to an outer state corresponded to by the mutated resource.

Resource links. This feature would link mutations of one resource to mutations of an-
other, imposing a free hierarchy among all the resources that have been defined.
In theory this can be implemented with external resources as they are today, but
such an approach would not be scalable. Resource links could potentially also be
created and destroyed dynamically, using an analysis similar to the one in FU-
SION [58]. As an example, Figure 7.1 illustrates how some JDBC classes might
be modelled and protected correctly with resource links. Among these classes, a
mutation of Connection.state also mutates Statement.connection, which in
turn influences ResultSet.results. This feature would be especially powerful if
combined with subresources.

Disjunctive conditions. In many cases it is natural to specify more than one contract
for a method. For instance, in the time and date example introduced in Sec-
tion 2.4.1, the Calendar.get method used in Java 1.5 returns a different result
depending on its argument. This could easily be specified as a disjunction of
conjunctions, where sets of preconditions are declared together with sets of post-
conditions, in the same way that resource fields can currently be specified. To
the Poplar compiler, this would be conceptually equivalent to several separate
method declarations with the same name, and thus this feature would not add
any new significant complications beyond the new syntax. However, it would
add complexity to Poplar checking in the same way that resource fields do.

Resources and properties in interfaces. It would be natural to declare resources and
properties in interfaces, and not just in classes. This would permit users to refer
to properties by the the interface that they belong to, avoiding the coupling to
a specific, implementing type when they are requested. It would also specify in
advance the property allocation to resources that implementing classes must later
abide by.

Handling a larger set of Java elements. The version of Poplar formalised and imple-
mented here is unaware of many important Java elements. For instance, it is
natural to include arrays, and not just fields, in resources as part of their state.
Exception handling in generated code also needs to be addressed. A naive ap-
proach to exception handling would be to specify in advance exactly what ex-
ceptions may be thrown by generated code. This would be sound, but it would
be a source of coupling and incompatibility, and it might preclude the integrator
from using new, unknown components to satisfy old queries. Further investiga-
tion would be needed in order to clarify how exceptions might be handled more
gracefully.

7.3.4 Poplar specification mining
We mentioned Prospector [75] as one inspiration for our work in Section 2.3.3. Prospec-
tor mines protocol fragments from a corpus of code, assumed to be valid, and uses this

164

7.3. FUTURE WORK

Connection

Statement

ResultSet

warningsstate transaction

results

cursorresults

connection

@open

@dirty

@open @closed

@first

@last

warnings

rowUpdates

Link External resource

Class @property resource

Legend

Figure 7.1: A future extension: protecting external state in JDBC with resource links

165

CHAPTER 7. RELATED WORK AND CONCLUSION

as a basis for code generation later. Another example of protocol mining is given by
Gabel and Su [35]. Pradel and Gross mine protocols from execution traces [96]. Alur
extracts specifications using a game-theoretical approach [7]. It should be similarly
possible for Poplar, given a valid code base, perhaps seeded with a small number of
initial property and resource names, to infer the most conservative specification that
matches a given code base and captures its temporal constraints. It might also be possi-
ble to discover resources and the methods or fields that mutate them, with the exception
of mutation done from native methods, where the precise state that is being mutated
cannot be discovered by examining Java code.

7.3.5 Implementation improvements
Jardine, the Poplar compiler described in Chapter 5, currently lacks several features
that would be very helpful in widespread practical use.

Subtype validation. Jardine does not currently check whether subtypes override their
supertypes in a valid way, although we have formalised this notion.

Java source output. Jardine only outputs compiled Java code currently, and it would
be desirable to also optionally output Java source code, which is easier for de-
velopers to inspect without having to resort to special tools.

Integration link verification. We discussed in Section 5.10 how integration link ver-
ification could be implemented, but implementing this feature remains to do as
future work.

7.3.6 Quality parameters
Poplar provides a well-defined notion of a valid integration, which is guaranteed to
be bounded above and below in terms of its destructive and constructive effects. The
implementation described in Chapter 5 is content to find any valid integration. But it
might be desirable to distinguish further between various valid integrations according
to how well they fit certain quality criteria. For instance, methods could be annotated
with information about their memory consumption, amount of I/O performed, CPU us-
age, and other such information, and hard or soft constraints could be placed on these
quality parameters to further improve the solution search. In this work we have fo-
cussed strictly on the notion of a correct integration, and thus, a study of the generation
of high quality integrations might be desirable in the future.

7.3.7 Analysis precision
A significant source of limitations is the imprecision of our alias analysis, and by ex-
tension our effect system. Many fragments will appear to Poplar as interfering with
each other even though in practice they will not. One source of improvements here
would be the adoption of some kind of ownership scheme, which would be able to go
beyond the simple distinction between Unique and any(T) mutations of resources.

Cherem and Rugina [22] developed an escape and effect analysis that is parame-
terised in terms of the number of fields per object and the heap depth being tracked.
Method summaries are generated automatically, and it is possible to find a good trade-
off between efficiency and precision thanks to the parameters. This approach could
possibly be adopted for use with more precise mutation summaries in Poplar.

166

Bibliography

[1] Hassan Aı̈t-Kaci and Jacques Garrigue. Label-selective λ-calculus syntax and
confluence. Theor. Comput. Sci., 151:353–383, November 1995.

[2] J Aldrich, V Kostadinov, and C Chambers. Alias annotations for program un-
derstanding. In OOPSLA ’02: Proceedings of the 17th annual ACM SIGPLAN
Conference on Object-Oriented Programming: Systems, Languages and Appli-
cations, volume 37, pages 311–330. ACM, 2002.

[3] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-oriented program-
ming. In Onward! at OOPSLA ’09: Proceedings of the 24th annual ACM
SIGPLAN Conference on Object-Oriented Programming: Systems, Languages
and Applications, pages 1015–1022. ACM, 2009.

[4] Jonathan Aldrich, Craig Chambers, and David Notkin. Architectural reason-
ing in ArchJava. In Proceedings of the 16th European Conference on Object-
Oriented Programming, ECOOP ’02, pages 334–367, London, UK, 2002.
Springer-Verlag.

[5] L De Alfaro and T A Henzinger. Interface automata. In Proceedings of the
9th Annual Symposium on Foundations of Software Engineering (FSE), volume
pages, pages 109–120. ACM, 2001.

[6] Ernesto J. Alfonso. Automatic protocol-conformance recommendations. In Pro-
ceedings of the ACM international conference companion on Object oriented
programming systems languages and applications companion, SPLASH ’11,
pages 207–208, New York, NY, USA, 2011. ACM.

[7] Rajeev Alur, Pavol Černý, P. Madhusudan, and Wonhong Nam. Synthesis of in-
terface specifications for Java classes. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI),
volume 40, pages 98–109. ACM, January 2005.

[8] Lars Ole Andersen. Program Analysis and Specialization for the C Program-
ming Language. PhD thesis, DIKU, University of Copenhagen, 1994.

[9] Sven Apel, Christian Kastner, and Christian Lengauer. FEATUREHOUSE:
Language-independent, automated software composition. In Proceedings of the
31st International Conference on Software Engineering, ICSE ’09, pages 221–
231, Washington, DC, USA, 2009. IEEE Computer Society.

[10] Ken Arnold, James Gosling, and David Holmes. JavaTM Programming Lan-
guage, The (4th Edition). Prentice Hall, 4 edition, 2005.

[11] F. Bastani. Deductive glue code synthesis for embedded software systems
based on code patterns. In Proceedings of the Ninth IEEE International Sym-
posium on Object and Component-Oriented Real-Time Distributed Computing
(ISORC’06), volume 91109, pages 109–116. IEEE, 2006.

[12] Don Batory and Bart J. Geraci. Composition validation and subjectivity in gen-
voca generators. IEEE Transactions on Software Engineering, 23:67–82, 1997.

167

BIBLIOGRAPHY

[13] Don Batory and Sean O’Malley. The design and implementation of hierarchical
software systems with reusamble components. ACM Transactions on Software
Engineering and Methodology, 1992.

[14] Kevin Bierhoff and J Aldrich. Lightweight object specification with typestates.
In FSE, 2005.

[15] Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased ob-
jects. In OOPSLA ’07: Proceedings of the 22nd Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming: Systems, Languages and Applications,
pages 301–320, New York, NY, USA, 2007. ACM.

[16] Kevin Bierhoff, Jonathan Aldrich, Taekgoo Kim, and Sungwoon Kang. Types-
tate protocol specification in JML. In SAVCBS 2009, 2009.

[17] Gavin Bierman, Matthew Parkinson, and James Noble. UpgradeJ: Incremental
typechecking for class upgrades. In Proceedings of the 22nd European confer-
ence on Object-Oriented Programming, ECOOP ’08, pages 235–259, Berlin,
Heidelberg, 2008. Springer-Verlag.

[18] G.M. Bierman, M.J. Parkinson, and A.M. Pitts. MJ: An imperative core calculus
for java and java with effects. Technical Report 563, University of Cambridge,
2003.

[19] Joshua Bloch. Effective Java: Programming Language Guide (Java Series).
Addison-Wesley, first printing edition, 2001.

[20] John Boyland. Checking interference with fractional permissions. In Static
Analysis Symposium, 2003.

[21] Mark Carman, L. Serafini, and Paolo Traverso. Web service composition as
planning. In ICAPS 2003 Workshop on Planning for Web Services, 2003.

[22] Sigmund Cherem and Radu Rugina. A practical escape and effect analysis for
building lightweight method summaries, 2007.

[23] Alonzo Church. Logic, arithmetic and automata. In International Congress of
Mathematicians, Stockholm. Inst. Mittag-Leffler, 1962.

[24] David G. Clarke, John M. Potter, and James Noble. Ownership types for flexi-
ble alias protection. In Proceedings of the 13th ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and applications, OOPSLA
’98, pages 48–64, New York, NY, USA, 1998. ACM.

[25] J. Darlington. An experimental program transformation and synthesis system,
pages 99–121. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
1986.

[26] Cleidson R. B. de Souza and David F. Redmiles. An empirical study of software
developers’ management of dependencies and changes. In Proceedings of the
13th International Conference on Software Engineering - ICSE ’08, pages 241–
250, New York, NY, USA, 2008. ACM.

[27] R. DeLine and M. Fähndrich. Typestates for Objects. In Lecture Notes in Com-
puter Science, pages 465–490. Springer-Verlag, 2004.

168

BIBLIOGRAPHY

[28] D. Dig and R. Johnson. The role of refactorings in API evolution. In 21st IEEE
International Conference on Software Maintenance (ICSM’05), pages 389–398.
IEEE, 2005.

[29] Torbjörn Ekman and Görel Hedin. The JastAdd extensible java compiler. In
Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented
programming systems and applications, OOPSLA ’07, pages 1–18, New York,
NY, USA, 2007. ACM.

[30] Michael D. Ernst. JSR-308 type annotations specification. http:
//types.cs.washington.edu/jsr308/specification/
java-annotation-design.pdf Retrieved 15 december 2011.

[31] J Field, D Goyal, G Ramalingam, and E Yahav. Typestate verification: Abstrac-
tion techniques and complexity results. Elsevier Science of Computer Program-
ming, 58(1-2):57–82, 2005.

[32] Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel Geay.
Effective typestate verification in the presence of aliasing. ACM Transactions
on Software Engineering and Methodology, 17(2), 2008.

[33] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A programmer’s
reduction semantics for classes and mixins. In Formal Syntax and Semantics of
Java, pages 241–269, London, UK, 1999. Springer-Verlag.

[34] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley Profes-
sional, 1 edition, 1999.

[35] Mark Gabel and Zhendong Su. Javert: fully automatic mining of general tempo-
ral properties from dynamic traces. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, SIGSOFT
’08/FSE-16, pages 339–349, New York, NY, USA, 2008. ACM.

[36] Mark Gabel and Zhendong Su. Online inference and enforcement of temporal
properties. In ICSE, 2010.

[37] Erich Gamma, Richard Helm, John M. Vlissides, and Ralph Johnson. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
1994.

[38] Jacques Garrigue. Label-Selective Lambda Calculi and Transformation Calculi.
PhD thesis, University of Tokyo, December 1994.

[39] Jacques Garrigue and Hassan Aı̈t-Kaci. The typed polymorphic label-selective
λ-calculus. In Proceedings of the 21st ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages, POPL ’94, pages 35–47, New
York, NY, USA, 1994. ACM.

[40] Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory
& Practice (The Morgan Kaufmann Series in Artificial Intelligence). Morgan
Kaufmann, 1 edition, 2004.

169

http://types.cs.washington.edu/jsr308/specification/java-annotation-design.pdf
http://types.cs.washington.edu/jsr308/specification/java-annotation-design.pdf
http://types.cs.washington.edu/jsr308/specification/java-annotation-design.pdf

BIBLIOGRAPHY

[41] Jeremy Gibbons. An introduction to the Bird-Meertens formalism. In Steve
Reeves, editor, Proceedings of the First New Zealand Formal Program Devel-
opment Colloquium, pages 1–12, Hamilton, nov 1994.

[42] Daniel Gibson, John Glass, Carole Lartigue, Vladimir Noskov, Ray-Yuan
Chuang, Mikkel Algire, Gwynedd Benders, Michael Montague, Li Ma, Monzia
Moodie, Chuck Merryman, Sanjay Vashee, Radha Krishnakumar, Nacyra
Assad-Garcia, Cynthia Andrews-Pfannkoch, Evgeniya Denisova, Lei Young,
Zhi-Qing Qi, Thomas Segall-Shapiro, Christopher Calvey, Prashanth Parmar,
Clyde Hutchison, Hamilton Smith, and Craig Venter. Creation of a bacterial
cell controlled by a chemically synthesized genome. Science, 329(5987):52–56,
2010.

[43] David Gifford, Pierre Jouvelot, J.M. Lucassen, and M.A. Sheldon. FX-87 ref-
erence manual. Technical Report MIT/LCS/TR-407, Massachusetts Institute of
Technology, September 1987.

[44] T Gojobori, EN Moriyama, and M Kimura. Molecular clock of viral evolution,
and the neutral theory. Proceedings of the National Academy of Sciences of the
United States of America, 87(24):10015–10018, 1990.

[45] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification, Third Edition. Addison-Wesley, 2005.

[46] Aaron Greenhouse and John Boyland. An object-oriented effect system. In
ECOOP ’99: Proceedings of the 13th European Conference on Object-Oriented
Programming (LNCS 1628), 1999.

[47] The Object Management Group. The common object request broker: Architec-
ture and specification (rev. 2.3), June 1999.

[48] Christian Haack, Brian Howard, Allen Stoughton, and Joe B Wells. Fully au-
tomatic adaptation of software components based on semantic specifications.
In AMAST ’02: Proceedings of the 9th International Conference on Algebraic
Methodology and Software Technology, pages 83–98, 2002.

[49] David Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8(3):231–274, 1987.

[50] Michael Hind. Pointer analysis: haven’t we solved this problem yet? In Pro-
ceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, PASTE ’01, pages 54–61, New York, NY,
USA, 2001. ACM.

[51] John Hogg. Islands: aliasing protection in object-oriented languages. SIGPLAN
Not., 26:271–285, November 1991.

[52] IBM. Jikes java compiler, 2011. http://jikes.sourceforge.net Re-
trieved 9 December 2011.

[53] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java:
a minimal core calculus for java and GJ. ACM Trans. Program. Lang. Syst.,
23:396–450, May 2001.

170

http://jikes.sourceforge.net

BIBLIOGRAPHY

[54] Apple inc. The Objective-C programming language, 10 2011.
http://developer.apple.com/library/mac/documentation/
Cocoa/Conceptual/ObjectiveC/ObjC.pdf Retrieved 14 December
2011.

[55] INRIA. Spoon java program processor. http://spoon.gforge.inria.
fr/Spoon/HomePage Retrieved 9 December 2011.

[56] ECMA International. Standard ECMA-367: Eiffel: Analysis, design
and programming language. http://www.ecma-international.
org/publications/standards/Ecma-367.htm Retrived 14 Decem-
ber 2011.

[57] A. Ireland and J. Stark. Combining proof plans with partial order planning
for imperative program synthesis. In Proceedings of the IEEE/ACM Interna-
tional Conference on Automated Software Engineering, volume 13, pages 65–
105. Springer, 2006.

[58] Ciera Jaspan and Jonathan Aldrich. Checking framework interactions with rela-
tionships. In ECOOP, 2009.

[59] JFree. JFreeChart. http://www.jfree.org/jfreechart Retrieved on
18 Nov 2011.

[60] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. Oracle-guided
component-based program synthesis. In ICSE, 2010.

[61] Pierre Jouvelot and David Gifford. Algebraic reconstruction of types and effects.
In Proceedings of the 18th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, POPL ’91, pages 303–310, New York, NY, USA,
1991. ACM.

[62] Stephen Kell. Rethinking software connectors. In International workshop on
Synthesis and analysis of component connectors in conjunction with the 6th ES-
EC/FSE joint meeting - SYANCO ’07, pages 1–12, New York, NY, USA, 2007.
ACM.

[63] Stephen Kell. The mythical matched modules. In OOPSLA ’09: Proceedings of
the 24th annual ACM SIGPLAN Conference on Object-Oriented Programming:
Systems, Languages and Applications, pages 881–888, New York, NY, USA,
2009. ACM.

[64] G.J. Kiczales, John Lamping, C.V. Lopes, J.J. Hugunin, E.A. Hilsdale, and
C. Boyapati. Aspect-oriented programming. In ECOOP ’97: Proceedings of
the 11th European Conference on Object-Oriented Programming (LNCS 1241),
number June, pages 220–242. Springer-Verlag, October 1997.

[65] Patrick Lam, Viktor Kuncak, and Martin Rinard. Generalized typestate checking
using set interfaces and pluggable analyses. In ACM SIGPLAN notices, 2004.

[66] Sven Lämmerman. Runtime Service Composition via Logic-Based Program
Synthesis. PhD thesis, KTH, 2002.

[67] Gary T. Leavens and Yoonsik Cheon. Design by contract with JML, 2004.

171

http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/ObjectiveC/ObjC.pdf
http://spoon.gforge.inria.fr/Spoon/HomePage
http://spoon.gforge.inria.fr/Spoon/HomePage
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.ecma-international.org/publications/standards/Ecma-367.htm
http://www.jfree.org/jfreechart

BIBLIOGRAPHY

[68] Henry Ledgard. ADA: An Introduction, Ada Reference Manual. Springer-Verlag,
Berlin, 1980.

[69] K. Rustan M. Leino, John Hatcliff, Gary Leavens, M.J. Parkinson, and Peter
Müller. Behavioral interface specification languages. Technical Report CS-TR-
09-01a, University of Central Florida, 2010.

[70] K. Rustan M. Leino and K. Rustan M.” Leino. Data groups: Specifying the
modification of extended state. 1998.

[71] K. Rustan M. Leino, Arnd Poetzsch-Heffter, and Yunhong Zhou. Using data
groups to specify and check side effects. In PLDI, 2002.

[72] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.

[73] Barbara H. Liskov and J. Wing. A behavioral notion of subtyping. ACM Trans-
actions on Programming Languages and Systems, 1994.

[74] Michael Lowry, Michael Lowry, Andrew Philpot, Thomas Pressburger, and Ian”
Underwood. AMPHION: Automatic programming for scientific subroutine li-
braries. INTL. SYMP. ON METHODOLOGIES FOR INTELLIGENT SYSTEMS,
31:326–335, 1994.

[75] David Mandelin, Lin Xu, Doug Kimelman, and Ratislav Bodı́k. Jungloid min-
ing: Helping to navigate the API jungle. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 48–61, New
York, NY, USA, 2005. ACM.

[76] Zohar Manna and Richard Waldinger. Fundamentals of deductive program syn-
thesis. IEEE Trans. Softw. Eng., 18(8):674–704, 1992.

[77] David McAllester and David Rosenblitt. Systematic nonlinear planning. In
Proceedings of the Ninth National Conference on Artificial Intelligence, pages
634–639. AAAI, 1991.

[78] M. D. McIlroy. Mass-produced software components. Proc. NATO Conf. on
Software Engineering, Garmisch, Germany, 1968.

[79] Bertrand Meyer. Applying ”Design by Contract”. IEEE Computer, 25(10):40–
51, 1992.

[80] Naftaly Minsky and Naftaly” Minsky. Towards alias-free pointers. IN EURO-
PEAN CONFERENCE FOR OBJECT-ORIENTED PROGRAMMING (ECOOP,
1098:189–209, 1996.

[81] Todd Moon. Error Correction Coding: Mathematical Methods and Algorithms.
Wiley-Interscience, 2005.

[82] Nomair a. Naeem and Ondřej Lhoták. Typestate-like analysis of multiple inter-
acting objects. In OOPSLA ’08: Proceedings of the 23rd Annual ACM SIGPLAN
Conference on Object-Oriented Programming: Systems, Languages and Appli-
cations, volume 43, New York, NY, USA, October 2008. ACM.

172

BIBLIOGRAPHY

[83] XuanLong Nguyen and Subbarao Kambhampati. Reviving partial order plan-
ning. In Proceedings of the 17th international joint conference on Artificial in-
telligence - Volume 1, pages 459–464, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

[84] Flemming Nielson, Hanne Nielson, and Chris Hankin. Principles of Program
Analysis. Springer, corrected edition, 2004.

[85] O. Nierstrasz. A survey of object-oriented concepts. Object-Oriented Concepts,
Databases and Applications, pages 3–21, 1989.

[86] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot:
an extensible compiler framework for java. In Proceedings of the 12th inter-
national conference on Compiler construction, CC’03, pages 138–152, Berlin,
Heidelberg, 2003. Springer-Verlag.

[87] Johan Nyström-Persson and Shinichi Honiden. Poplar: Java composition with
labels and AI planning. In FREECO ’11: The Workshop on Free Composition
at Onward! 2011, 2011.

[88] Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstraction and
inheritance. In Symposium on Principles of Programming Languages, pages
75–86, 2008.

[89] M.J. Parkinson. When separation logic met java (by example). In FTfJP, 2006.

[90] Terence Parr. ANTLR, 2011. http://www.antlr.org Retrieved on 21
November 2011.

[91] David J. Pearce. JKit documentation, July 2010. http://whiley.org/
tools/jkit/ Retrieved 21 November 2011.

[92] David J. Pearce. JKit, 2011. http://homepages.ecs.vuw.ac.nz/

˜djp/jkit/ Retrieved 21 November 2011.

[93] David J. Pearce. JPure: A modular purity system for java. In CC: International
Conference on Compiler Construction, 2011.

[94] Benjamin Pierce. Types and Programming Languages. The MIT Press, 1 edition,
2002.

[95] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings
of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’89, pages 179–190, New York, NY, USA, 1989. ACM.

[96] Michael Pradel and Thomas R. Gross. Automatic generation of object usage
specifications from large method traces. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software Engineering, ASE ’09, pages
371–382, Washington, DC, USA, 2009. IEEE Computer Society.

[97] Steven P. Reiss. Semantics-based code search. In Proceedings of the 2009 IEEE
31st International Conference on Software Engineering, pages 243–253. IEEE,
May 2009.

173

http://www.antlr.org
http://whiley.org/tools/jkit/
http://whiley.org/tools/jkit/
http://homepages.ecs.vuw.ac.nz/~djp/jkit/
http://homepages.ecs.vuw.ac.nz/~djp/jkit/

BIBLIOGRAPHY

[98] Martin Rinard and Alexandru D. Salcianu. Purity and side effect analysis for
java programs. In VMCAI, 2005.

[99] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. The MIT Press, 2004.

[100] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach
(3rd Edition). Prentice Hall, 3 edition, 2009.

[101] Alexandru D. Salcianu. Pointer analysis for java programs: novel techniques
and applications. PhD thesis, Cambridge, MA, USA, 2006. AAI0818179.

[102] J. Schumann and B. Fischer. NORA/HAMMR: making deduction-based soft-
ware component retrieval practical. In Proceedings of the 12th international
conference on Automated software engineering (formerly: KBSE), ASE ’97,
pages 246–, Washington, DC, USA, 1997. IEEE Computer Society.

[103] M. Shaw. Procedure calls are the assembly language of software interconnec-
tion. In Proceedings of the Workshop on Studies of Software Design. Springer,
1993.

[104] Douglas R. Smith. KIDS: A semiautomatic program development system. IEEE
Trans. Softw. Eng., 1990.

[105] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. From program verifi-
cation to program synthesis. SIGPLAN Not., 45:313–326, January 2010.

[106] Guy Steele. Common LISP : The Language (LISP Series). Digital Press, 1984.

[107] Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings
of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, POPL ’96, pages 32–41, New York, NY, USA, 1996. ACM.

[108] Mark Stickel, Mark Stickel, Richard Waldinger, Michael Lowry, Thomas Press-
burger, and Ian Underwood. Deductive composition of astronomical software
from subroutine libraries. Proceedings of the 12th International Conference on
Automated Deduction, 814:341–355, 1994.

[109] Rok Strniša, Peter Sewell, and Matthew Parkinson. The java module system:
core design and semantic definition. SIGPLAN Not., 42:499–514, October 2007.

[110] RE Strom and S Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE Transactions on Software Engineering,
12(1):157–171, 1986.

[111] Alexander J. Summers and Peter Mueller. Freedom before commitment: a
lightweight type system for object initialisation. In Proceedings of the 2011
ACM international conference on Object oriented programming systems lan-
guages and applications, OOPSLA ’11, pages 1013–1032, New York, NY, USA,
2011. ACM.

[112] Sun Microsystems. JavaBeans API specification. http://java.sun.com/
products/javabeans.

174

http://java.sun.com/products/javabeans
http://java.sun.com/products/javabeans

BIBLIOGRAPHY

[113] Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Éric Tanter.
First-class state change in plaid. In Proceedings of the 2011 ACM international
conference on Object oriented programming systems languages and applica-
tions, OOPSLA ’11, pages 713–732, New York, NY, USA, 2011. ACM.

[114] Clemens Szyperski. Component Software: Beyond Object-Oriented Program-
ming (2nd Edition). Addison-Wesley Professional, 2 edition, 2002.

[115] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect
inference. Journal of Functional Programming, 1992.

[116] The OSGi Alliance. OSGI service platform release 4 version 4.2 core specifica-
tion. http://www.osgi.org/Download/Release4V42.

[117] TIOBE. TIOBE programming community index, November 2011.
http://www.tiobe.com/index.php/content/paperinfo/
tpci/index.html Retrieved 21 November 2011.

[118] Franklyn Turbak and David Gifford. Design Concepts in Programming Lan-
guages. The MIT Press, 2008.

[119] Enn Tyugu. Using classes as specifications for automatic construction of pro-
grams in the NUT system. 1994.

[120] R. Vasa, M. Lumpe, and J. Schneider. Patterns of component evolution. In
Lecture Notes in Computer Science, volume 4829, pages 235–251. Springer-
Verlag, 2007.

[121] Andrzej Wasowski. On efficient program synthesis from statecharts. SIGPLAN
Not., 38:163–170, June 2003.

[122] Sun World. An interview with the creators of java, July 1995.
http://sunsite.uakom.sk/sunworldonline/swol-07-1995/
swol-07-java.html Retrieved 21 November 2011.

[123] Zhenchang Xing and Eleni Stroulia. API-evolution support with Diff-CatchUp.
IEEE Transactions on Software Engineering, 33(12):818–836, December 2007.

[124] Zhenchang Xing and Eleni Stroulia. Differencing logical UML models. Auto-
mated Software Eng., 14:215–259, June 2007.

[125] Daniel M. Yellin and Robert E. Strom. Protocol specifications and compo-
nent adaptors. ACM Transactions on Programming Languages and Systems,
19(2):292–333, March 1997.

[126] A.M. Zaremski. Signature and specification matching. PhD thesis, Mass. Inst.
Tech, 1996.

[127] A.M. Zaremski and J. Wing. Specification matching of software components.
ACM Transactions on Software Engineering and Methodology, 1997.

[128] Mattias Zenger. Type-safe prototype-based component evolution.

[129] Mattias Zenger. Programming Language Abstractions for Exensible Software
Components. PhD thesis, Ècole Fédérale Polytechnique de Lausanne (EPFL),
Switzerland, 2004.

175

http://www.osgi.org/ Download/Release4V42
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://sunsite.uakom.sk/sunworldonline/swol-07-1995/swol-07-java.html
http://sunsite.uakom.sk/sunworldonline/swol-07-1995/swol-07-java.html

BIBLIOGRAPHY

[130] Mattias Zenger. Keris: Evolving software with extensible modules. Journal of
Software Maintenance and Evolution: Research and Practice, 2005.

[131] Mattias Zenger. JaCo java compiler (the programming language Keris), 2007.
http://lampwww.epfl.ch/˜zenger/keris. Retrieved 9 December
2011.

[132] Mattias Zenger, Tom Mens, Jim Buckley, and Awais Rashid. Towards a taxon-
omy of software evolution. In Intl Workshop on Unanticipated Software Evolu-
tion (USE), 2003.

[133] Tian Zhao, Jens Palsberg, and Jan Vitek. Lightweight confinement for feather-
weight java. SIGPLAN Not., 38:135–148, October 2003.

[134] Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael D. Ernst. Own-
ership and immutability in generic java. In OOPSLA ’10: Proceedings of
the 25th annual ACM SIGPLAN Conference on Object-Oriented Programming:
Systems, Languages and Applications, 2010.

176

http://lampwww.epfl.ch/~zenger/keris

Index

Acceptable mutations, 63, 78
ADA, 156
AI planning, 32
Aliasing, 93
Alternation, 56

Basic establisher, 54
Bytecode, 25

Chaining, 39, 55, 70
Classloading, 25
COM+, 159
Component-based programming, 26
Component-based software, 159
Composite property, 86
Constrained field, 52
Constructor type, 75
CORBA, 159

Destructive read, 104
Drop statement, 81, 99

Effect systems, 93
Effects, 37
Encapsulation, 23
Expanded signature, 84, 106, 111
Expression contract, 54
Expression types, 79
External resource, 64, 86
External semantic contract, 49

Field, 52
Field access, 109
Field type, 75
Fragment specification, 40
Fugue, 90
FUSION, 94

GenVoca, 157

If-statement, 109
Internal semantic contract, 49
Invocation substitutions, 79, 109

JaCo, 97
Jardine, 97
JastAddJ, 97
Java, 24
JavaBeans, 160
JDBC client, 29
JFreeChart, 119

JKit, 97, 99
Jungloid synthesis, 32
JVM, 24

Label, 49, 70
Label resolution stage, 105
Label signature, 54, 70
Labelled argument selecion, 156
Labelled lambda calculus, 156
Lisp, 156

Method body checking, 62
Method body, checking of, 111
Method invocation, 109
Method type, 75
MJ, 69
Mutation summary, 55

Nominal subtyping, 23

Object-oriented programming, 23
OSGI, 159
Overriding, 59, 99

Parameter object, 132
Partial order planning, 35
Plain field, 52
Plain methods, 99
Plain/Poplar boundary, 99
Polyglot, 97
Polymorphism, 23
Poplar checking stage, 105
Poplar methods, 99
Poplar-0, 69
Poplar-1, 86
Progress, 116
Properties, 36
Property, 49, 70
Prospector, 32
Protocols, 90

Query, 34, 63
Query solving, 63
Query solving stage, 112

Refactoring, 26
Resource, 50, 70
Resource access level, 51
Resource field, 109
Resources, 37
Runtime composition, 163

177

INDEX

Semantic breaking change, 28
Simula-67, 23
Smalltalk, 24
Spoon, 97
Statement sequences, 108
Statement types, 81
Static methods, 99
Substitution principle, 37
Syntactic breaking change, 28
Syntax, 73, 86

Tag, 49
Temporal contract, 49
Time and Date API, 33
Typestate checking, 30, 90

Unconstrained field, 52
Uniqueness, 41, 56, 75, 116
Uniqueness (Jardine), 104
Uniqueness checking stage, 104
UpgradeJ, 161

Well-formed class, 84
Well-formed label signature, 72
Well-formed method, 84

178

	Introduction
	Procedure Calls as an Assembly Language
	Inspirations for Our Work
	Hypothesis and Contributions

	The Design of Poplar
	Background
	Object-oriented programming
	The Java programming language
	Component-based programming
	Refactorings

	Observations on Java Component Evolution
	The structure of integrating code

	Inspirations
	Typestate and protocols
	AI planning
	Prospector: fragment mining and assembly based on types

	The Elements of Poplar
	Labelled variables
	Queries
	Partial order planning
	Properties
	Resources and effects
	Fragment specifications
	Benefits of the resource and effect model
	Uniqueness
	Workflow
	Modularity of analyses and transformations
	Summary

	Language Reference
	Syntax
	Labels
	Tags
	Properties
	Example

	Resources
	Resource access levels
	Resource mutations
	Implicit mutations
	Example

	Fields
	Plain fields
	Unconstrained resource fields
	Constrained resource fields
	Example

	Expression contracts
	Label signatures
	Mutation summaries
	The chaining operation
	The alternation operation
	Subsumption of contracts

	Uniqueness of references
	Example
	Example 2

	Overriding and subclassing
	Overriding of properties and resources
	Overriding of methods

	Method Checking
	Method body checking

	Queries and query solving
	External resources
	Concluding remarks

	Formalising Poplar
	Middleweight Java (MJ)
	Judgment forms

	Poplar0 : A Minimal Poplar
	Label signatures and chaining
	Syntax and symbols
	Uniqueness kinds
	Method, constructor and field typing
	Subsumption of label signatures, resources and mutation summaries
	Well-formed class definitions, part 1
	Typing judgments for expressions
	Typing judgments for promotable expressions
	Typing judgments for statements
	Well-formed class definitions, part 2
	Queries and satisfaction of queries

	Poplar1 : Adding External Resources and Composite Properties
	Discussion
	Soundness

	Related Work
	Typestate and protocols
	Effect systems
	Alias confinement
	Other related work

	Conclusion

	The Design and Implementation of a Poplar Compiler
	Selecting a foundation for Jardine
	The tasks of a Poplar compiler
	Mixed Java and Poplar compilation
	An Overview of of JKit
	An Overview of Jardine
	Uniqueness Checking Stage
	Label Resolution Stage
	Poplar Checking Stage
	Representation of Poplar types
	Principles behind the checking algorithm
	Selected checking routines
	Discussion

	Query Solving Stage
	Planning
	Decidability of planning
	Ensuring the safety of solutions in a context

	A Future Extension: Verification of Integration Links
	Conclusion

	Evaluation and Discussion
	Case Study: Refactoring JFreeChart
	A JFreeChart application
	Initial service API annotations
	Initial solutions
	Refactorings to be carried out
	Introducing a parameter object
	Converting parameters to state
	Splitting ChartTheme
	Hiding a delegate
	Introducing data readers

	Application to Fowler's Refactorings
	Composing methods
	Moving features between objects
	Organising data
	Simplifying conditional expressions
	Making method calls simpler
	Dealing with generalisation
	Big refactorings
	New refactorings
	Summary

	Discussion
	Limitations
	Reliability
	Adoptability
	Developing new Poplar components

	Conclusion

	Related Work and Conclusion
	Related Work
	Behavioural specifications
	Labelled argument selection
	AI planning
	Code synthesis and component generation
	Empirical studies of software evolution
	Component matching, discovery and retrieval
	Component frameworks and techniques
	Handling component evolution
	Other related work

	Conclusion
	Future Work
	Runtime composition
	Java-compatible syntax
	Additional language elements
	Poplar specification mining
	Implementation improvements
	Quality parameters
	Analysis precision

