Tag: heidegger


Zuboff’s Surveillance Capitalism

June 20th, 2019 — 8:34pm

Earlier this year I read Shoshana Zuboff’s The Age of Surveillance Capitalism and was strongly affected by it. It’s always hard to judge how new works will age, but I found her narrative a poignant comment on the last few decades of the information society: a society that evolved quite differently from what many expected from the early days of the Internet. I’m willing to guess that this book will remain relevant for a long time as a snapshot of the direction that society has taken in our present time. Morozov has analysed the book in more detail than I am capable of. Here I will try to relate some of Zuboff’s points to the ideas I have developed on this blog. Unlike Fleischer (Swedish) I feel that the length of this book is justified.

I’m not categorically against capitalism (yet), but I do believe that capitalism can take problematic forms and sustain negative processes in society. Zuboff argues that what our contemporary social/behavioural data-driven internet giants represent is nothing less than a genuinely new form of capitalism that is essentially dependent on the need to observe and predict (ultimately, influence) increasingly minute forms of human behaviour. All those accidental data leaks from mobile apps, etc., are not accidental. She draws liberally on Arendt (The Origins of Totalitarianism) to make her case. There’s ample room to draw on Heidegger (enframing/gestellung), but for some reason, Zuboff chooses not to go there.

Humans wish to live in freedom (we usually agree) and perhaps do live in freedom. But what is this freedom? One definition would be that free actions do not have a calculable cause, need not be rational. In a certain way, freedom is the freedom to be arbitrary, to be irrational. This might not mean that causes do not exist, but it may mean that the right to conceal causes is important.

But from a systems point of view, entirely free, as in unconstrained, humans (in a vacuum, or a blank space devoid of meaningful relations or objects, etc) are not free. Probably, we feel most free when we are constrained to the appropriate degree: we need a floor to stand on, momentum to move with, fixed points to brace against… if the constraints are appropriate and partial in this way, then we develop a style of behaviour. In theory, we can imagine a situation where humans are so constrained that they can hardly make any choices from one moment to the next. Exploiting the gap between on one hand totally constrained and specified behaviour, and on the other hand the moderate constraints of an “appropriate” situation in the above sense, a situation with slack, we are free to play, to endow our actions with style, to perform. Perhaps this is one useful notion of freedom. Behavioural markets, then, purchase the right to choose our behavioural styles for us, to invisibly constrain us and introduce more friction. Perhaps they convert the slack into profit, perhaps they transfer it to other actors using money as a conduit. (Of course, we may think of the ability to endow one’s own actions with style in such a constraint gap as the flow of particularity.)

Why is human freedom still a scary notion to us, individually and collectively? Many consumers and techno-optimists would happily trust the voice of the algorithms rather than personally make choices. Many rush to record and give away vast quantities of data. Various forms of private and governmental surveillance combine in ways probably unimaginable to most who participate in it. Which unconscious drives are at work here? What do we hope to gain as a society? Can the internet, software, and modern electronics not be applied to nobler ends?

Comment » | Philosophy, Uncategorized

Action, traces and perception

August 25th, 2017 — 11:21am

A sketch of the ways that concepts allow us to make sense of traces of action in the world (or simply of processes, if we do not wish to posit an actor).

Actions (or processes) leave traces. Traces of such processes include beings, such as houses, roads, animals and plants, and also non-beings, some of which may be potential beings, for example new species or scientific phenomena to be named in the future.

The intelligibility of traces depends on having access to meaningful concepts, such as the concept of an oak or an owl. Not only must we have developed the relevant concept in ourselves and become sufficiently familiar with it, but it must also present itself at the right time when we encounter pre-conceptual oak-indications or owl-indications (or traces of an oak-making process). Some doubt as to whether the traces are of an oak or of a different tree is allowed at first, but not later as the learner becomes more experienced in the world of trees.

What presents itself is not merely an instance of the concept “oak” but also qualities of the oak. It may be towering, withered, majestic or small. Weather conditions and parasites may have left all kinds of marks that interleave themselves with the basic impression. The oak’s particularity is inexhaustible. “I saw an oak” is in no way a complete account of what was seen. Indeed the task of seeing the oak itself may be time-consuming and difficult if taken seriously. A world where all oaks were merely pure instances of the oak concept would be a completely meaningless one.

If what is perceived is man-made, then it will be the perception of a process that contains in part a sequence of actions carried out by humans (but necessarily has its ultimate origin in a non-human process). Here the additional dimension of intent may be added to the act of perception. Through our understanding of ourselves and of our culture, we may be able to work out what was created and why, and for what purpose. The case of a neighbour redecorating their garden is comparable in quality to that of encountering a foreign culture and trying to understand its religious ceremonies and objects. In a time of conflict, we may look at the object as a source of potential hostility or friendliness.

Man-made objects will be the easiest ones to imitate since intent and human actions may be extracted from the traces. Seeing a man-made object will in many cases allow someone with sufficient pre-existing skill to create a similar object. Natural processes are considerably harder. We are as yet unable to manufacture oaks or owls from scratch (not the same as sowing an acorn or hatching an egg). Laboratories, biomedical and otherwise, are constantly at work translating the processes of nature into sequences of human actions (e.g. molecular cloning protocols). Thus science works by expanding the space of what is, or can be, man-made.

 

 

 

Comment » | Philosophy

Dreyfus and Bostrom. Four AI assumptions and two books.

April 23rd, 2017 — 9:09pm

At first glance, Hubert Dreyfus’ 1992 book What Computers Still Can’t Do (WCSCD, originally published in 1972 as What Computers Can’t Do) seems untimely in the current business climate, which favours massive and widespread investment in AI (these days, often understood as being synonymous with machine learning and neural networks). However, being untimely may in fact allows us to act “against our time and thus hopefully also on our time, for the benefit of a time to come” (Nietzsche). And the book’s argument might in fact not be outdated, but simply forgotten in the frenzy of activity that is our present AI summer.

Dreyfus outlines four assumptions that he believes were (in many cases, still are) implicitly made by AI optimists.

The biological assumption. On some level, the (human) brain functions like a digital computer, processing discrete information.

The psychological assumption. The mind, rather than the brain, functions like a digital computer, even if the brain doesn’t happen to do so.

The epistemological assumption. Even if neither minds nor brains function like digital computers, then this formalism is still sufficient to explain and generate intelligent behaviour. An analogy would be that planets moving in orbits are perhaps not solving differential equations, but differential equations are adequate tools for describing and understanding their movement.

The ontological assumption. Everything essential to intelligent behaviour ­— such as information about the environment — can in principle be formalised as a set of discrete facts. 

These assumptions all relate to the limitations of computation (as we currently understand it) and of propositional logic.

Dreyfus is famous for interpreting thinkers such as Heidegger and Merleau-Ponty, and consistently draws upon these thinkers in his arguments. In fact, as he points out in WCSCD, the phenomenological school attacks the very long philosophical tradition that sees mind and world as strictly separate, and that assumes that the mind functions by way of a model that somehow can be reduced to logical operations (we can see why the field of AI has implicitly, and in many cases unwittingly, taken over this tradition). Historically, this tradition reached perhaps one of its purest expressions with Descartes. Indeed Being and Time, Heidegger’s major work, is very anti-Cartesian. Heidegger’s account of intelligibility demands that one (Dasein) is in a world which appears primarily as meaningful interrelated beings (and not primarily as atomic facts, or sources thereof, to be interpreted), and is historically in a situation, making projections on the basis of one’s identity. Here, calculation and correspondence-based theories of truth are derived and secondary things. There is no clear separation between world and “model” since there is no model, just the world and our ability to relate to it.

I will hazard a guess that most neuroscientists today would not take the first two assumptions seriously. In all kinds of biology and medicine, we regularly encounter new phenomena and mechanisms that could not be captured by the simple models we originally came up with, forcing us to revise our models. Making brains (bodies) and/or minds somehow isomorphic to symbolic manipulation seems wholly inadequate. More interesting, and much harder to settle unambiguously, are the epistemological and the ontological assumptions. If the epistemological assumption is false, then we will not be able to generate “intelligent behaviour” entirely in software. If the ontological assumption is false, then we will not be able to construct meaningful (discrete and isolated) models of the world.

The two latter assumptions are indeed the stronger ones out of these four. If the epistemological assumption turns out to be invalid, then the biological and psychological assumptions would necessarily also be invalid. The ontological assumption is closely related and similarly strong.

By contrast, Nick Bostrom‘s Superintelligence: Paths, Dangers, Strategies is a more recent (2014) and very different book. While they are certainly worth serious investigation, theories about a possible technological singularity can be somewhat hyperbolic in tone. But Bostrom comes across as very level-headed as he investigates how a superintelligence might be formed (as an AI, or otherwise), how it might or might not be controlled, and the political implications of such an entity coming into existence. For the most part, the book is engrossing and interesting, though clearly grounded in the “analytical” tradition of philosophy. It becomes more compelling because of the potential generality of its argument. Does a superintelligence already exist? Would we know if it did? Could it exist as a cybernetic actor, a composite of software, machines, and people? It is interesting to read the book, in parallel, as a speculation on (social, economic, geopolitical, technological, psychological or composites thereof) actors that may already exist but that are beyond our comprehension.

Bostrom’s arguments resemble how one might think about a nuclear arms race. He argues that the first superintelligence to emerge might have a decisive strategic advantage and, once in place, prevent (or be used to prevent) the emergence of competing superintelligences. At the same time it would bestow upon those who control it (if it can be controlled) a huge tactical advantage.

Even though Bostrom’s argument is mostly very general, at times it is obvious that much of the thinking is inspired by or based on the idea of AI as software running on a digital computer. To me this seemed implicit in many of the chapters. For example, Bostrom talks about being able to inspect the state of a (software agent’s) goal model, to be able to suspend, resume, and copy agents without information loss, to measure hedonic value, and so on. Bostrom in many cases implies that we would be able to read, configure and copy an agent’s state precisely, and sometimes also that we would be able to understand this state clearly and unambiguously, for example in order to evaluate whether our control mechanisms are working. Thus many of Bostrom’s arguments seem tightly coupled to the Church-Turing model of computation (or at least to a calculus/operational substrate that allows for inspection, modification and duplication of state). Some of his other arguments are, however, sufficiently general that we do not need to assume any specific substrate.

Bostrom, it seems to me, implicitly endorses at least the epistemological assumption throughout the book (and possibly also the ontological one). Even as he rightly takes pains to avoid stating specifically how technologies such as superintelligences or whole brain emulation would be implemented, it is clear that he imagines the formalism of digital computers as “sufficient to explain and generate intelligent behaviour”. In this, but perhaps not in everything he writes, he is a representative of current mainstream AI thinking. (I would like to add that even if he has wrongly taken over these assumptions, the extreme caution he advises us to proceed with regarding strong AI deserves to be taken seriously – the risks in practice are sufficiently great for us to be quite worried. I do not wish to undermine his main argument.)

It is thinkable but unlikely that in the near future, through a resounding success (which could be an academic, industrial or commercial one, for example), the epistemological assumption will be proven true. What I hold to be more likely (for reasons that have been gradually developed on this blog) is that current AI work will converge on something that may well be extremely impressive and that may affect society greatly, but that we will not consider to be human-like intelligence. The exact form that this will take remains to be discovered.

Hubert Dreyfus passed away in April 2017, while I was in the middle of writing this post. Although I never had the privilege of attending his lectures in person, his podcasted lectures and writings have been extremely inspirational and valuable to me. Thank you.

Comment » | Computer science, Philosophy

Rice fields and rain

October 5th, 2016 — 11:58am

img_5604

Humans primarily live in a world of beings, each of which has meaning. Meaningful beings appear to us interconnected, referencing practices and other beings in a referential totality. Buttons suggest pushing, chairs suggest sitting, a tractor suggests farming. A (Japanese) rice paddy may suggest the heavy labour that goes into the rice harvest each year, the tools and equipment that go with it, as well as the gradual depopulation of the village, since the young ones prefer a different line of work elsewhere. It may be part of the site and locus of an entire set of concerns and an outlook on life.

The world of beings is the one that is most immediate to us, and a world of molecules, atoms, energy or recorded data, useful as it may be, is something much further away. In each case it must be derived and renewed from the use of a growing and complex apparatus of equipment, practices and body of concepts, such as the traditions of physics or mathematics. Yet nobody would dispute that these worlds – the world of beings and the calculated world – are interrelated. In some cases they are even deeply intertwined.

But how can we reconcile the calculated world with the world of beings? How exactly do they influence each other? And if the calculated world is expanding aggressively, thanks to the spread of computational machinery and its servants, is the world of beings being pushed back? Receding? Are we abandoning it, since it is no longer good enough for us? Refusing to touch it, other than with thick gloves?

The calculated world concerns itself with propositions, true facts, formal models, records. A conceptual basis is needed to codify and engage with it. A record is formed when an observation is made, and the observer writes down what was observed. Initially, it retains an intimate connection with the world (of beings). The record is interpreted in light of the world and allowed to have its interplay with other beings. The observation “it rained heavily this week” is allowed to mean something in the context of farming, in the context of a possible worry about floods, or as a comment on an underwhelming holiday. Depending on who the reader is and what their concerns are, all these meanings can be grasped. The record may thus alter the reader’s outlook in a way similar to what direct experience of the rainfall would do.

At this level, the only facts we may record are that it rained or did not rain, and whether the rain was heavy or light. But given that we have some notion of space or time, as human beings do, repetition becomes possible. Scales for measuring time and space can be constructed, The rainfall can now be 27 or 45 mm. We are now further away from the world of farming, floods and holidays – “45 mm” of rain needs to be interpreted in order to be assigned any meaning. It has been stripped of most the world where it originated. The number 45 references only calculable repetition of an act of measurement. Enabled by the notions of space and time, already it tries to soar above any specific place or time to become something composable, calculable, nonspecific. Abstraction spreads its wings and flaps them gently to see if they will hold.

So on all the way up to probability distributions, financial securities, 27 “likes” in a day on social media and particle physics. At each level of the hierarchy, even when we purport to move “downward” into the “fundamentals” of things, layers of meaning are shed and a pyramid of proverbial ivory soars to the sky.

Spatial and temporal observations depend on measurement on linear scales, such as a stopwatch or a ruler. Such scales are first constructed through repeated alignment of some object with another object. Such repeated alignment depends on counting, which in turn depends on the most basic and most impoverished judgment: whether something is true or false, does or does not accord. Thus something can have the length of 5 feet or the duration of 3 hourglasses: it accords with the basic unit a certain number of times. This accordance is the heavily filtered projection of a being through another. The side of a plot of land is measured, in the most basic case, by viewing the land through a human foot – how many steps or feet suffice to get from one side to the other? Even though the foot is actually able to reveal many particularities of the land being measured – its firmness, its dampness, its warmth – the only record that this attitude cares to make is whether or not spatial distance accords, and how many times in succession it will accord. All kinds of measurement devices, all quantitative record making, follows this basic principle. Thus, the calculable facts are obtained by a severe discarding of a wealth of impressions. This severity is obvious to those who are being trained to judge quantitatively for the first time, but soon internalised and accepted as a necessity. Today, these are precisely the facts we are accustomed to calling scientific and objective.

But the accordance of beings with distance or time is, of course, very far from the only things we can perceive about them. The being emits particular shapes, configurations, spectra that make impressions on us and on other beings. Thus it is that we may perceive any kind of similarity – for example the notion that two faces resemble each other, that a dog resembles its owner, or that a constellation of stars looks like a warrior. We delight in this particularity, which in a way is the superfluous or excess substance of beings – it is not necessary for their perception but it forms and adds to it. Thus the stranger I met is the stranger with a yellow shirt and not merely the stranger. He can also be the stranger with a yellow shirt and unkempt hair, or the stranger with a yellow shirt and unkempt hair and a confident smile, and so on – any number of details may be recorded, any number of concepts may be brought into the description. These details are not synthetic or arbitrary. But they are also not independent of the one who observes. They would depend both on a richness that is of the being under observation, and on the observer’s ability to form judgments and concepts, to see metaphorically, creatively and truthfully.

Such impressions, which carry a different and perhaps more immediate kind of truth than the truth that we derive from calculations and records, may now have become second class citizens in the calculated world that grows all around us.

3 comments » | Computer science, Philosophy, Uncategorized

The inexhaustible wealth of appearance, information and specificity

December 13th, 2015 — 2:36pm

IMG_0001

When perceiving an object, for example a chair, the statement “this is X” (this is a chair) is almost entirely uninteresting. The concept by which we identify the object is a mere word, and in a sense entirely devoid of meaning.

That concept does help us align this object with other entities in space and time. It sets expectations about what has been done and what can be done to and with it, and it links the object to social practices. But none of these things are very interesting. After all, we understand quite well what society expects from chairs.

What is more interesting is all the other statements we could make about a particular chair, that is, all the qualities, information, phenomena and experiences that do not fit the general concept of a chair. Call this the chair’s particularity. It may be unusually sturdy or rickety. It may evoke a sense of sorrow or longing for a person who used to sit on it. It may make us think about economics. Its shape may even have something spiritual about it. It may, if it is a chair in an abandoned house, be decomposing. And even this is just scratching the surface.

In all likelihood, we are able to produce an unbounded number of interesting statements about this locus that is the chair. (Recall the famous school assignment about writing a story several hundred words long about the face of a coin.) And this would hold true both when we speak freely, metaphorically and poetically, and when we restrict ourselves to testable, scientific (in the modern sense) statements. New metaphors can always be invented, new scientific equipment may always be constructed. These additional modes of relatedness to the locus provide, perhaps, the basis for new statements.

How are we to understand this fundamental overflowing, this exuberant blossoming, the profound potential wealth that we draw upon and realise when we articulate statements about an entity such as this chair? It is not part of the concept “chair”. This concept is overlaid as an afterthought in order to make the surplus of impressions manageable and graspable. We are used to economising the use of our consciousness, dispensing it only sparingly, through the shielding, buffering and deflection that concepts afford us.

For Heidegger, being is the basis of intelligibility, a carrier of meaning. Language and intelligibility exists only on the basis of primordial being. He makes it his task to inquire as to what this being is.

For Georges Bataille, all activity that involves redistribution of energy, human and otherwise, accumulates a surplus that necessarily must be released in some way.

Myths and archetypes repeat themselves throughout history and society, in constantly renewed forms which are both always the same and always made from different specific constitutent parts. They can always be repeated in a different way. The hero myth exists in every culture (see for example Jung or Campbell). Conversely, this myth in all its specific detail is always different each time it appears.

In difference and repetition, Deleuze argues that conceptual machinery is constantly at work, extracting difference from whatever the underlying basis is.

Genetic material successfully reproduces and preserves itself, and perhaps prospers, only through the continual introduction of difference and variation at an appropriate rate.

The digital world, on the other hand, denies the possibility of generating an unbounded number of statements from some entity (such as a record in a database). In fact, its essence is the possibility of perfect copying, which happens only when the information being carried is strictly circumscribed and limited.

All these concepts, it seems, have something in common – the interaction between a specific form and the possibility of an infinite number of variations of and departures from that form.

4 comments » | Philosophy

Back to top