The coming politicization of mathematics and computer science

Increasingly, ordinary people encrypt their internet communications. Some want to share files. Some are worried about the increasing surveillance and threats of surveillance of Internet data that is taking place in many corners of the world. ACTA, Hadopi, data retention would be a few examples. People may simply wish to keep their data private, even in cases when the data is not objectionable. Others, hopefully not so ordinary people, have an acute need to hide from authorities of some form or another, maybe because they actually have a criminal intent, or maybe because they are regime critics in repressive countries. Maybe they are submitting data to sites like Wikileaks.

Various technologies have come out of academic experiments, volunteer work and government sponsored research to assist with encrypted communication. PGP/GnuPG and SSH are classic mainstays. Onion routing, as implemented in the TOR system, is an effective way of concealing the true origin and destination of data being sent around. Darknet systems like the I2P project aim to build a complete infrastructure for an entirely new kind of Internet, piggybacking on the old one but with anonymity and encryption as first class fundamental features.

I think we are only at the start of a coming era of political conflicts centered around communications technology, and that more and more issues will have to be ironed out in the coming years and decades. The stakes are high. On one hand control and political stability, on the other hand individual rights and democratic progress. This is not new. One thing that I think is potentially new and interesting though, is how mathematics and computer science ought to become increasingly sensitive and political in the coming years.

Today disciplines like genetics and stem cell research are considered controversial research areas by some people since they touch on the very foundations of what we think of as life. Weapons research of all kinds is considered controversial for obvious reasons, and the development of a weapon on the scale of nuclear bombs would completely shift the global power structure.  One fundamental building block of communications control is the ability to encrypt and to decrypt. These abilities are ultimately limited by the frontiers of mathematical research. Innovations such as the Skein hash function directly affect the cryptographic power balance.

Most of the popular varieties of encryption in use today can be overcome, given that the adversary has sufficient computing power and time. In addition, human beings often compromise their keys, trust the wrong certificates, or act in ways that diminish the security that has been gained. Encryption is not absolute unless the fact that something has been encrypted has been perfectly hidden. Rather, it is a matter of economics, of making it very cheap to encrypt data,and very expensive for unintended receivers to decrypt it.

It is not possible to freeze encryption at a certain arbitrary level, or to restrict the use of it. Computers are inherently general purpose, and software designed for one purpose can almost always be used for another. If the situation is driven to its extreme, we might identify two possible outcomes: either general purpose computers are forbidden or restricted, or uncontrolled, strongly encrypted communication becomes the norm. Christopher Kullenberg has touched on this topic in Swedish.

Those who would rather not see a society where widespread encryption is commonplace would perhaps still want to have what they see as desirable effects of computerisation. In their ideal world they would pick and choose what people can do with computers, in effect giving a list of permitted and prohibited uses. But this is not how general purpose computers work. They are programmable, and people can construct software that does what they want. If the introduction of non-authorised software somehow is prohibited, and all applications must be checked by some authority, applications can still usually be used for purposes they were not designed for. This generality of purpose simply cannot be removed from computers without making them useless – at least that is how it seems today. It seems that it would take a new fundamental model of computation that selectively prohibits certain uses is needed in order to make this happen. (In order to make sure that this kind of discovery is not put to use by the “other camp”, those of us who believe in an open society should try to find it, or somehow establish the fact that it cannot be constructed.)

Mathematics now stands ever more closely connected with political power. Mathematical advances can almost immediately increase or decrease the resistance to information flow (given that somebody incorporates the advances into usable software). The full consequences of this are something we have yet to see.

Comments 4