
An Open Framework for Extensible Multi-Stage 
Bioinformatics Software

Johan Nyström-Persson1, Gabriel Keeble-Gagnère2, Matthew I Bellgard2, 
Kenji Mizuguchi1

9 Nov 2012
PRIB, Tokyo, Japan

1.Nat. Inst. of Biomedical Innovation, Osaka, Japan
2. Centre for Comparative Genomics, Murdoch U, Perth, Australia

Thursday, 8 November 12



This talk

•New principles for bioinformatics 
software

•The Scala programming language

•The Friedrich framework

Thursday, 8 November 12



Bioinformatics software today

Thursday, 8 November 12



Bioinformatics software

•Software development for data-intensive experimental 
science is very difficult

•However, we have inadequate tools, frameworks, 
common practices and developer skills

Thursday, 8 November 12



Bioinformatics software development is special

• One of the main sources difficulty is change

• Technology and data formats (for example, sequencing)

• Scientific methods

• Availability and nature of data sources (databases etc) being used

• But there’s also scale

• Enormous data sets, constantly growing larger

• Need for parallelism

Thursday, 8 November 12



Additional problems

• R and Perl were good choices 10-15 years ago - not anymore!

• But there’s still a huge repository of bioconductor and CPAN packages - 
massive network effect, hard to leave old technology

• What about big data and concurrency?

• There’s a need for accessible solutions that anybody can program, making 
use of all the idle CPU cores that are around us in our labs

• Concurrency is very hard with Perl and C but much easier with modern 
languages

Thursday, 8 November 12



New principles

•In the following, we make a set of observations about 
the current situation and as a result, recommend a new 
set of principles

•The principles were arrived at while developing a de 
novo genome assembler

Thursday, 8 November 12



Monolithic software

•When we optimise for performance at any cost, 
software can become difficult to change - “monolithic”

•Monolithic software resembles a black box that cannot 
be changed or is very difficult to change

•Encapsulation may not be well suited to bioinformatics

•Principle: expose internal structure

Thursday, 8 November 12



Principle: Expose internal structure

• Software tools should 
expose each internal 
processing step

• Allow for manipulation and 
inspection of each one 
independently

• Allow for reconfiguration of 
data flow

Phase

Phase

PhasePhase

Phase

Phase

Database

Input

Output

Tool

Input

Output

Exposed structure Hidden structure

Thursday, 8 November 12



Multiple stages

• Conventional view: software is a product (scientific tool) that is delivered to a 
customer (a researcher)

• First method development (experimentation), then method usage 
(production)

• Realistic view: scientific software is never finished, and needs to evolve along 
with the research

• Moving from experimentation to production, and back again (multi-stage 
software)

Thursday, 8 November 12



Multi-stage software

Experimental stage

Production stage

Experimental stage

Production stage

• Avoid designing for either the experimental stage (flexible, slow) or for the 
production stage (inflexible, fast). 

• Assume that we have to move back and forth continuously between applying 
the method and modifying the method!

Thursday, 8 November 12



Finality

• Software developers often make various final assumptions about input 
formats, users’ intentions, and so on, and hardcode them throughout the 
software

• Avoid a final design or final assumptions about how the software is to be 
used ultimately: minimal finality

Thursday, 8 November 12



Loss of intermediate data

• Many tools naturally perform computation in multiple stages

• However, after each stage has been computed, data is discarded and it is 
impossible to go back to the previous stage

• Principle: retain intermediate data maximally, so that it is efficient to go back and 
explore previous stages with other parameters

• Mathematically: preserve dimensionality maximally

Thursday, 8 November 12



Preserving intermediate data

Traditional: start to finish

With preservation

Enables efficient 
exploration with varying 
parameters

Step 1

Step 2 Step 3

Input

Output

Step 2b
Step 3b1

Step 3b2

Step 2c
Step 3c1

Output

Output

Output

Step 1 Step 2 Step 3Input Output

Step 1 Step 2 Step 3Input Output

Thursday, 8 November 12



Performance bias OR flexibility bias

• Traditionally, bioinformatics programmers tend to write either very flexible 
software (experimental stage) or very fast software (production stage)

• Instead of optimising max(f, p), optimise f • p !

• Aim for acceptable performance and acceptable flexibility

Context Performance Flexibility Monolithic Examples

Experimentation Low Very high No BioPerl, 
BioPython

Production Very high Low Possibly Velvet, Abyss, 
BioJava

Proposed ideal High High No

Thursday, 8 November 12



Principles for bioinformatics software: summary

• Expose internal structure

• Multi-stage applications

• Conserve dimensionality maximally 
(retain intermediate data)

• Minimal finality

• Flexibility with performance

• (Ease of use)

Thursday, 8 November 12



The Scala programming language

Thursday, 8 November 12



Programming languages

Flexible Inflexible

Slow

Fast C
C++

Python
Perl Ruby

Java

R

Thursday, 8 November 12



A new kind of compromise?

Flexible Inflexible

Slow

Fast

Python
Perl Ruby

C
C++

Java

R

Experimental stage

Prod. 
stage

Thursday, 8 November 12



Scala

• Hybrid functional/object-oriented language for the Java VM

• In development for the last 10 years or so, now becoming popular and widely 
used in academia, industry

• Very easy to combine with Java code and libraries

• Based on modern computer science

• Simple, efficient concurrency and parallelism (Erlang-style model with 
actors)

• www.scala-lang.org

Thursday, 8 November 12

http://www.scala-lang.org
http://www.scala-lang.org


Scala (2)

•Industrial users include The Guardian, LinkedIn, Xerox, 
Twitter, Siemens, ...

•Code is very compact, flexible style, often 3x smaller 
than Java

•Interactive console (like python, perl etc) (“REPL”)

•The performance of Java and the compactness of 
Python/Perl!

Thursday, 8 November 12



Scala in bioinformatics

•BioScala - 2 year old project, now dormant, by Pjotr Prins 
(https://github.com/bioscala/bioscala)

•(BioJava) - substantial, can be used very easily from 
Scala (http://biojava.org)

•Scabio - small bioinfo algorithms collection, by Markus 
Gumbel (http://www.mi.hs-mannheim.de/gumbel/en/forschung/scabio)

•Friedrich - our contribution in this talk 

• Also: use any maths/visualisation/DB etc library you want from Java

Thursday, 8 November 12



Bioinformatics needs Scala

•Several small libraries and projects exist, but none has 
become very big yet - hopefully this will change soon

•Scala may be the best language to support the 
experimental stage and the production stage 
simultaneously: good fit for scientific research

•Why everyone in bioinformatics should learn Scala by 
Pjotr Prins (http://blog.thebird.nl/?p=26)

Thursday, 8 November 12

http://blog.thebird.nl/?p=26
http://blog.thebird.nl/?p=26


Friedrich: A software framework

Thursday, 8 November 12



Friedrich 

•A framework that supports bioinformatics software 
development in Scala according to the principles we 
have outlined (“The Friedrich principles”)

Thursday, 8 November 12



Friedrich features (current)

•Phases

• An “application” is structured as a set of phases that operate on data

• Just as in Scala, there is support for both mutable and immutable data

•Pipelines

• A pipeline is a sequence of phases that can process data

•Configuration management

Thursday, 8 November 12



Phases

Compute 
similarity

Read pathways 
from file

Compute 
clusters

Read pathways 
from kegg

PhaseInput Output

Thursday, 8 November 12



Pipelines

Phase

Data 1

Data 2

Phase

Data 3

Compute 
similarity

Read pathways 
from file

Compute 
clusters

Compute 
similarity

Compute 
clusters

Read pathways 
from kegg

P1 P2

Thursday, 8 November 12



Supporting the principles

•Because phases can be rearranged, minimal finality is 
supported, and internal structure is exposed

•Immutable data supports conservation of 
intermediate results (work in progress)

•Scala supports flexibility with performance

Thursday, 8 November 12



Friedrich applications

• A simple but functional de novo genome assembler is available

• Can handle approx. 20 million k-mers using 2 GB RAM

• Internal applications at NIBIO, not ready for release

• Feel free to develop your own!

• Get Friedrich: http//bitbucket.org/jtnystrom/friedrich

Thursday, 8 November 12



Comparison with...

• Task running frameworks, for example Galaxy and Yabi are focussed on 
providing a high level interface to existing components

• User-developer separation

• “Toolkits” e.g. SAMTools, Picard: multiple binaries

• Not flexible enough, no true interactive experimentation

Thursday, 8 November 12



Ongoing and future work

• Currently in progress

• Akka, a framework for distributed/concurrent actor-based programming

• Model is similar to Erlang

• Goal: transparent, location-agnostic concurrency

• Integration with BioScala/BioJava

• Future goals

• Downloadable package/module system

Thursday, 8 November 12



Summary

• Bioinformatics software development faces unique challenges, and 
collectively we are not up to scratch

• New principles show the way to more natural and efficient software 
development in BI

• Scala may be the language we need next; Perl, R and C++ are not good 
enough

• Friedrich is a framework that supports our new principles, and you are 
welcome to use and contribute to it

Thursday, 8 November 12



Thank you !

We would very much appreciate comments and collaboration. 
Please contact us: johan@nibio.jp, jtnystrom@gmail.com (me)

gabriel7@gmail.com (Gabriel)

“Everyone who has ever built anywhere a new heaven 
first found the power thereto in his own hell.” - F. W. Nietzsche

Thursday, 8 November 12

mailto:johan@nibio.jp
mailto:johan@nibio.jp
mailto:johan@nibio.jp
mailto:johan@nibio.jp

