An Open Framework for Extensible Multi-Stage
Bioinformatics Software

Johan Nystrom-Persson’, Gabriel Keeble-Gagnére?, Matthew | Bellgard?,
Kenji Mizuguchi’

1.Nat. Inst. of Biomedical Innovation, Osaka, Japan
2. Centre for Comparative Genomics, Murdoch U, Perth, Australia

9 Nov 2012
PRIB, Tokyo, Japan

Thursday, 8 November 12

This talk

eNew principles for bioinformatics
software

* The Scala programming language

e [he Friedrich framework

Sloinformatics software today

Thursday, 8 November 12

Sioinformatics software

e Software development for data-intensive experimental
science is very difficult

e However, we have inadequate tools, frameworks,
common practices and developer skKills

Thursday, 8 November 12

Bloinformatics software development is special

e One of the main sources difficulty is change

e Technology and data formats (for example, sequencing)

e Scientific methods

e Availability and nature of data sources (databases etc) being used

e But there’s also scale

e Enormous data sets, constantly growing larger

e Need for parallelism

Thursday, 8 November 12

Additional problems

¢ R and Perl were good choices 10-15 years ago - not anymore!

e But there’s still a huge repository of bioconductor and CPAN packages -
massive network effect, hard to leave old technology

e \What about big data and concurrency?

e There’s a need for accessible solutions that anybody can program, making
use of all the idle CPU cores that are around us in our labs

e Concurrency is very hard with Perl and C but much easier with modern
languages

Thursday, 8 November 12

New principles

*|n the following, we make a set of observations about
the current situation and as a result, recommend a new
set of principles

* [he principles were arrived at while developing a de
Nnovo genome assembler

Thursday, 8 November 12

Monolithic software

e \When we optimise for performance at any cost,
software can become difficult to change - “monolithic”

e Monolithic software resembles a black box that cannot
be changed or is very difficult to change

e Encapsulation may not be well suited to bioinformatics

® Principle: expose internal structure

Thursday, 8 November 12

2rinciple:

—Xpose internal structure

e Software tools should
expose each internal

Exposed structure

processing step |

e Allow for manipulation and
Inspection of each one
iIndependently

e Allow for reconfiguration of

data flow

=

Phase Phase

Phase Phase

‘ Output \

Hidden structure

Input

‘ Output \

Thursday, 8 November 12

Multiple stages

e Conventional view: software is a product (scientific tool) that is delivered to a
customer (a researcher)

e First method development (experimentation), then method usage
(production)

¢ Realistic view: scientific software is never finished, and needs to evolve along
with the research

e Moving from experimentation to production, and back again (multi-stage
software)

Thursday, 8 November 12

Multi-stage software

e Avoid designing for either the experimental stage (flexible, slow) or for the
production stage (inflexible, fast).

e Assume that we have to move back and forth continuously between applying
the method and modifying the method!

Thursday, 8 November 12

Finality

e Software developers often make various final assumptions about input
formats, users’ intentions, and so on, and hardcode them throughout the
software

e Avoid a final design or final assumptions about how the software is to be
used ultimately: minimal finality

Thursday, 8 November 12

L oss of intermediate data

e Many tools naturally perform computation in multiple stages

e However, after each stage has been computed, data is discarded and it is
Impossible to go back to the previous stage

e Principle: retain intermediate data maximally, so that it is efficient to go back and
explore previous stages with other parameters

e Mathematically: preserve dimensionality maximally

Thursday, 8 November 12

2reserving intermediate data

Traditional: start to finish

Input |—> Step 1 —>| Step 2 —>| Step 3 —>| Output I
S —

With preservation

Input Step 1 Step 2 | Step 3 I | Output I

Enables efficient -
S OUtpu
exploration with varying Stepz tep 3 Utput

parameters | j '|Step 3b1 H otiput
Input Step1 |—> Step2b

Step 3b2 -—-’ Output

——

Step 2C >
Step 3ct Output

Thursday, 8 November 12

Performance bias O

=3 flexibility bias

e Traditionally, bioinformatics programmers tend to write either very flexible
software (experimental stage) or very fast software (production stage)

¢ Instead of optimising max(f, p), optimise fe p !

e Aim for acceptable performance and acceptable flexibility

Context Performance | Flexibility Monolithic Examples
i i . BioPerl,
Experimentation Low Very high No BioPython
: . . Velvet, Abyss,
Production Very high Low Possibly Biodava
Proposed ideal High High No

Thursday, 8 November 12

Principles for bioinformatics software: summary

e Expose internal structure

e Multi-stage applications

e Conserve dimensionality maximally
(retain intermediate data)

e Minimal finality

e Flexibility with performance

e (Ease of use)

Thursday, 8 November 12

The Scala programming language

Thursday, 8 November 12

Programming languages

Flexible Inflexible
A€ >
Fast C
C++
Java
R
Perl Ruby
SlOWv PyThOﬂ

Thursday, 8 November 12

A new kind of compromise”/

Flexible

Experimental stage Inflexible
Fast | -
FProd. .
stage ’ Scala Jewe

R
Perl Ruby
Slow | Python

Thursday, 8 November 12

Scala ’SC&'&

* Hybrid functional/object-oriented language for the Java VM

e In development for the last 10 years or so, now becoming popular and widely
used in academia, industry

¢ \/ery easy to combine with Java code and libraries
e Based on modern computer science

e Simple, efficient concurrency and parallelism (Erlang-style model with
actors)

e www.scala-lang.org

Thursday, 8 November 12

http://www.scala-lang.org
http://www.scala-lang.org

Scala (2) ’SC&'&

¢ Industrial users include The Guardian, Linkedln, Xerox,
Twitter, Siemens, ...

e Code is very compact, flexible style, often 3x smaller
than Java

e |nteractive console (like python, perl etc) (“REPL”)

* The performance of Java and the compactness of
Python/Perl!

Thursday, 8 November 12

Scala in bioinformatics ’ S Cca I d

e BioScala - 2 year old project, now dormant, by Pjotr Prins
(https://github.com/bioscala/bioscala)

e (BioJava) - substantial, can be used very easily from
Scala (http://biojava.org)

e Scabio - small bioinfo algorithms collection, by Mmarkus
Gumbel (http://www.mi.hs-mannheim.de/gumbel/en/forschung/scabio)

e Friedrich - our contribution in this talk

e Also: use any maths/visualisation/DB etc library you want from Java

Thursday, 8 November 12

Bioinformatics needs Scala ’ Sca|a

e Several small libraries and projects exist, but none has
become very big yet - hopefully this will change soon

e Scala may be the best language to support the
experimental stage and the production stage
simultaneously: good fit for scientific research

e |Vhy everyone in bioinformatics should learn Scala by
Pjotr Prins (http://blog.thebird.nl/?p=26)

Thursday, 8 November 12

http://blog.thebird.nl/?p=26
http://blog.thebird.nl/?p=26

Friedrich: A software framework

Thursday, 8 November 12

Friedrich

o A framework that supports bioinformatics software
development in Scala according to the principles we
have outlined (“The Friedrich principles”)

Thursday, 8 November 12

Friedrich features (current)

e Phases

e An “application” is structured as a set of phases that operate on data

e Just as in Scala, there is support for both mutable and immutable data
* Pipelines
e A pipeline is a sequence of phases that can process data

e Configuration management

Thursday, 8 November 12

Phases

Input

Compute Read pathways
similarity from file
—— N——
Read pathways Compute
from kegg clusters
—— ——
Phase —> Output
——

Thursday, 8 November 12

Plpelines

Data 1

Phase

Data 2

Phase

Data 3

OLE0E

P1

P2

Read pathways
from file

Read pathways
from kegg

Compute Compute
similarity similarity
Compute Compute
clusters clusters
—— ——

Thursday, 8 November 12

Supporting the principles

¢ Because phases can be rearranged, minimal finality is
supported, and internal structure is exposed

¢ | mmutable data supports conservation of
intermediate results (work in progress)

e Scala supports flexibility with performance

Thursday, 8 November 12

Friedrich applications

e A simple but functional de novo genome assembler is available

e Can handle approx. 20 million k-mers using 2 GB RAM

¢ Internal applications at NIBIO, not ready for release

¢ Feel free to develop your own!

e Get Friedrich: http//bitbucket.org/jtnystrom/friedrich

Thursday, 8 November 12

Comparison with...

e Task running frameworks, for example Galaxy and Yabi are focussed on
providing a high level interface to existing components

e User-developer separation

e “Toolkits” e.g. SAMTools, Picard: multiple binaries

e Not flexible enough, no true interactive experimentation

Thursday, 8 November 12

Ongoing and future work

e Currently in progress

e Akka, a framework for distributed/concurrent actor-based programming

* Model is similar to Erlang

e Goal: transparent, location-agnostic concurrency

e Integration with BioScala/BioJava

e Future goals

e Downloadable package/module system

Thursday, 8 November 12

Summary

e Bioinformatics software development faces unique challenges, and
collectively we are not up to scratch

e New principles show the way to more natural and efficient software
development in Bl

e Scala may be the language we need next; Perl, R and C++ are not good
enough

e Friedrich is a framework that supports our new principles, and you are
welcome to use and contribute to it

Thursday, 8 November 12

“Everyone who has ever built anywhere a new heaven
first found the power thereto in his own hell.” - F. W. Nietzsche

Thank you !

We would very much appreciate comments and collaboration.
Please contact us: johan@nibio.jp, jtnystrom@gmail.com (me)
gabriel/@gmail.com (Gabriel)

Thursday, 8 November 12

mailto:johan@nibio.jp
mailto:johan@nibio.jp
mailto:johan@nibio.jp
mailto:johan@nibio.jp

