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This talk

eNew principles for bioinformatics
software

* The Scala programming language

e [he Friedrich framework




Sloinformatics software today
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Sioinformatics software

e Software development for data-intensive experimental
science is very difficult

e However, we have inadequate tools, frameworks,
common practices and developer skKills
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Bloinformatics software development is special

e One of the main sources difficulty is change

e Technology and data formats (for example, sequencing)

e Scientific methods

e Availability and nature of data sources (databases etc) being used

e But there’s also scale

e Enormous data sets, constantly growing larger

e Need for parallelism
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Additional problems

¢ R and Perl were good choices 10-15 years ago - not anymore!

e But there’s still a huge repository of bioconductor and CPAN packages -
massive network effect, hard to leave old technology

e \What about big data and concurrency?

e There’s a need for accessible solutions that anybody can program, making
use of all the idle CPU cores that are around us in our labs

e Concurrency is very hard with Perl and C but much easier with modern
languages
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New principles

*|n the following, we make a set of observations about
the current situation and as a result, recommend a new
set of principles

* [he principles were arrived at while developing a de
Nnovo genome assembler
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Monolithic software

e \When we optimise for performance at any cost,
software can become difficult to change - “monolithic”

e Monolithic software resembles a black box that cannot
be changed or is very difficult to change

e Encapsulation may not be well suited to bioinformatics

® Principle: expose internal structure
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2rinciple:

—Xpose internal structure

e Software tools should
expose each internal

Exposed structure

processing step |

e Allow for manipulation and
Inspection of each one
iIndependently

e Allow for reconfiguration of

data flow
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Phase Phase

Phase Phase

‘ Output \

Hidden structure

Input

‘ Output \
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Multiple stages

e Conventional view: software is a product (scientific tool) that is delivered to a
customer (a researcher)

e First method development (experimentation), then method usage
(production)

¢ Realistic view: scientific software is never finished, and needs to evolve along
with the research

e Moving from experimentation to production, and back again (multi-stage
software)
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Multi-stage software

e Avoid designing for either the experimental stage (flexible, slow) or for the
production stage (inflexible, fast).

e Assume that we have to move back and forth continuously between applying
the method and modifying the method!
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Finality

e Software developers often make various final assumptions about input
formats, users’ intentions, and so on, and hardcode them throughout the
software

e Avoid a final design or final assumptions about how the software is to be
used ultimately: minimal finality
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L oss of intermediate data

e Many tools naturally perform computation in multiple stages

e However, after each stage has been computed, data is discarded and it is
Impossible to go back to the previous stage

e Principle: retain intermediate data maximally, so that it is efficient to go back and
explore previous stages with other parameters

e Mathematically: preserve dimensionality maximally
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2reserving intermediate data

Traditional: start to finish

Input |—> Step 1 —>| Step 2 —>| Step 3 —>| Output I
S —

With preservation

Input Step 1 Step 2 | Step 3 I | Output I

Enables efficient -
S OUtpu
exploration with varying Stepz tep 3 Utput

parameters | j '|Step 3b1 H otiput
Input Step1 |—> Step2b

Step 3b2 -—-’ Output

——

Step 2C >
Step 3ct Output
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Performance bias O

=3 flexibility bias

e Traditionally, bioinformatics programmers tend to write either very flexible
software (experimental stage) or very fast software (production stage)

¢ Instead of optimising max(f, p), optimise fe p !

e Aim for acceptable performance and acceptable flexibility

Context Performance | Flexibility Monolithic Examples
i i . BioPerl,
Experimentation Low Very high No BioPython
: . . Velvet, Abyss,
Production Very high Low Possibly Biodava
Proposed ideal High High No
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Principles for bioinformatics software: summary

e Expose internal structure

e Multi-stage applications

e Conserve dimensionality maximally
(retain intermediate data)

e Minimal finality

e Flexibility with performance

e (Ease of use)
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The Scala programming language
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Programming languages

Flexible Inflexible
A€ >
Fast C
C++
Java
R
Perl  Ruby
SlOWv PyThOﬂ
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A new kind of compromise”/

Flexible

Experimental stage Inflexible
Fast | -
FProd. .
stage ’ Scala Jewe

R
Perl  Ruby
Slow | Python
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Scala ’SC&'&

* Hybrid functional/object-oriented language for the Java VM

e In development for the last 10 years or so, now becoming popular and widely
used in academia, industry

¢ \/ery easy to combine with Java code and libraries
e Based on modern computer science

e Simple, efficient concurrency and parallelism (Erlang-style model with
actors)

e www.scala-lang.org
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Scala (2) ’SC&'&

¢ Industrial users include The Guardian, Linkedln, Xerox,
Twitter, Siemens, ...

e Code is very compact, flexible style, often 3x smaller
than Java

e |nteractive console (like python, perl etc) (“REPL”)

* The performance of Java and the compactness of
Python/Perl!
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Scala in bioinformatics ’ S Cca I d

e BioScala - 2 year old project, now dormant, by Pjotr Prins
(https://github.com/bioscala/bioscala)

e (BioJava) - substantial, can be used very easily from
Scala (http://biojava.org)

e Scabio - small bioinfo algorithms collection, by Mmarkus
Gumbel (http://www.mi.hs-mannheim.de/gumbel/en/forschung/scabio)

e Friedrich - our contribution in this talk

e Also: use any maths/visualisation/DB etc library you want from Java
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Bioinformatics needs Scala ’ Sca|a

e Several small libraries and projects exist, but none has
become very big yet - hopefully this will change soon

e Scala may be the best language to support the
experimental stage and the production stage
simultaneously: good fit for scientific research

e |Vhy everyone in bioinformatics should learn Scala by
Pjotr Prins (http://blog.thebird.nl/?p=26)
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Friedrich: A software framework
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Friedrich

o A framework that supports bioinformatics software
development in Scala according to the principles we
have outlined (“The Friedrich principles”)
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Friedrich features (current)

e Phases

e An “application” is structured as a set of phases that operate on data

e Just as in Scala, there is support for both mutable and immutable data
* Pipelines
e A pipeline is a sequence of phases that can process data

e Configuration management
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Phases

Input

Compute Read pathways
similarity from file
—— N——
Read pathways Compute
from kegg clusters
—— ——
Phase —> Output
——
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Plpelines

Data 1

Phase

Data 2

Phase

Data 3

OLE0E

P1

P2

Read pathways
from file

Read pathways
from kegg

Compute Compute
similarity similarity
Compute Compute
clusters clusters
—— ——
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Supporting the principles

¢ Because phases can be rearranged, minimal finality is
supported, and internal structure is exposed

¢ | mmutable data supports conservation of
intermediate results (work in progress)

e Scala supports flexibility with performance
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Friedrich applications

e A simple but functional de novo genome assembler is available

e Can handle approx. 20 million k-mers using 2 GB RAM

¢ Internal applications at NIBIO, not ready for release

¢ Feel free to develop your own!

e Get Friedrich: http//bitbucket.org/jtnystrom/friedrich
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Comparison with...

e Task running frameworks, for example Galaxy and Yabi are focussed on
providing a high level interface to existing components

e User-developer separation

e “Toolkits” e.g. SAMTools, Picard: multiple binaries

e Not flexible enough, no true interactive experimentation
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Ongoing and future work

e Currently in progress

e Akka, a framework for distributed/concurrent actor-based programming

* Model is similar to Erlang

e Goal: transparent, location-agnostic concurrency

e Integration with BioScala/BioJava

e Future goals

e Downloadable package/module system
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Summary

e Bioinformatics software development faces unique challenges, and
collectively we are not up to scratch

e New principles show the way to more natural and efficient software
development in Bl

e Scala may be the language we need next; Perl, R and C++ are not good
enough

e Friedrich is a framework that supports our new principles, and you are
welcome to use and contribute to it
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“Everyone who has ever built anywhere a new heaven
first found the power thereto in his own hell.” - F. W. Nietzsche

Thank you !

We would very much appreciate comments and collaboration.
Please contact us: johan@nibio.jp, jtnystrom@gmail.com (me)
gabriel/@gmail.com (Gabriel)
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